MEC is Looking for a Fall ’18/Spring ’19 paid intern!

Kansas City Clean Cities Coalition University Workforce Development Program

Paid Internship Announcement

ABOUT: The Clean Cities internship will give students the opportunity to grow public awareness and expand the markets of advanced vehicle technologies, alternative fuels, and practices that reduce the consumption of petroleum. Students in the past have participated in research, outreach activities, public education, K-12 outreach, fleet events, and a vast array of transportation-related environmental projects.

PREFERRED MAJORS:  Marketing, Environmental Science, Communication Studies, Business Administration, and any related fields

SHIFT: Scheduling is very flexible, but student must be available during regular business hours.  Candidate must be willing to work an average of 20 hours a week based on student’s schedule during regular business hours and also weekend outreach events when applicable.

BENEFITS: Hourly wages depend on undergraduate/graduate student status ($12/hr for undergraduates; $15/hr for graduate students). College credit may be available upon approval of student advisor. Ample opportunity to network with businesses, industry and government stakeholders. A dynamic working environment gives the opportunity to learn multiple work-related skills in a short period of time.

JOB DESCRIPTION: Support to Kansas City Regional Clean Cities, an alternative fuel program. We will consider the student’s program interests when assigning the work that he/she will be doing. The intern’s responsibilities may include any of the following (based upon our current need and your experience, skills, and interests):

•    Meeting and event coordination

•    Conducting outreach, phone calls
•    Administrative support
•    Requesting/handling articles from coalition members; drafting newsletter content
•    Website and social media updates
•    Contact management
•    Market research / surveys

•    Educating local, state, and Congressional government officials

We work with students to develop a schedule that accommodates the intern’s classes and homework. Learning opportunities include webinars on topics such as event planning and public relations, online courses through Clean Cities University, and direct experience.

SKILLS/EXPERIENCE NEEDED: The candidate needs to have strong written communication skills, computer skills (including spreadsheets and word processing), and excellent organizational skills. Junior or Senior status is preferred.

HOW TO APPLY: Applications should be directly submitted to David Albrecht, Program Coordinator, at david (at) metroenergy (dot) org. Your email should include your resume and cover letter.  In the letter, please state why you are interested in interning with Metropolitan Energy Center, average number of hours a week you are available, your relevant experience, and the timeframe during which you will be available for the internship. We will contact you if we wish to schedule an interview.

Applications are due August 24, 2018.

LOCATION: Our offices are located at 3810 Paseo Blvd Kansas City, MO 64109.  About five minutes north of the Plaza.

Save BIG on Nissan LEAF

Now until January 3, 2017, buy a Nissan LEAF at any Kansas City Nissan dealership and save up to $17,500 off retail. Click here for details and required downloadable flier.

COVID, Carbon and Clean Energy

Since January, there’s been a lot of discussion, analysis and 151-proof worry about the COVID virus – understandably.  Viral impacts have produced (in less than six months) the biggest economic implosion since the 1930s, public health lockdowns spanning the planet, and a global death toll of (at this writing) 434,388, with nearly 116,000 of those confirmed deaths in the United States.

As you’d expect, there has also been a certain amount of silver-lining searching.  It’s only natural – as human beings, we look for the lesson, or what we could have done differently or what we might gain in times like these.  And with cars off the road and factories closing down, citizens of cities as remote from one another as Los Angeles, Beijing and New Delhi looked out the window and realized something truly strange was happening – the air was cleaner than it had been in years, even decades.  This four-minute clip from CBS has visuals that I won’t try to convey via keyboard.  For many, the spectacle of suddenly invisible (a.k.a. “normal”) air was startling.

With that kind of obvious impact, the next Big Question didn’t take long to surface:  if substantially shutting down Normal looks like this, what kind of impact is it having on the climate?  The early returns are in, and the answer is – not much.  NOAA reports globally averaged CO2 content of 417.07 ppm (parts per million) for May – up from 414.65 ppm in May 2019 and 411.24 ppm in May 2018.  There’s science behind this lack of change.  Earth, in effect, breathes – this was Charles Keeling’s great discovery in the late 1950s.  Atmospheric CO2 content rises and falls each year, bottoming out in October as most of Earth’s landmass hasn’t yet released carbon dioxide before the northern winter, and peaking in May before northern hemisphere forests have really begun to reabsorb it.  This means that COVID’s clean air aftereffects hit just as seasonal CO2 growth approached its peak.

Early estimates are that pandemic shutdowns led to an 8% drop in anthropogenic CO2 output, and that it would take 20-30% reductions for at least six months to put a dent in atmospheric readings.  As climatologist Katherine Hayhoe notes, imagine all the carbon we’ve put into the atmosphere as a pile of bricks.  We’ve been piling them up for about 250 years, more or less, and cutting a slice from latest brick dropped on top of the pile doesn’t make that much of a difference.  And we’re already seeing a rapid rebound in human CO2 output; “Things have happened very quickly”, in the words of one climatologist tracking current conditions as economic activity ramps back up again.

So if even something as disastrous as COVID can’t substantially alter the pace at which CO2 continues to pile up in the planet’s atmosphere, what will?  And if all the efforts made to clean up our energy act to date haven’t materially changed things, what can?  It would be easy to throw up our hands and assume that this spring’s lack of substantive results represents something permanent.

It doesn’t.

We are at an inflection point in how we produce and use energy and the pace of change is only accelerating.  Coal, the dirtiest source of electricity, is dying in multiple major economies.  June 10th marked 61 straight days that the United Kingdom didn’t generate one kilowatt from coal.  COVID has cut demand, so that and an unusually sunny May are part of the story, but the UK’s power grid has fundamentally changed.  A kilowatt of electricity cost as much as 600 grams of CO2 in 2012 – this spring, as little as 125.  And this took place even as the country’s population grew from 64.5 million in 2012 to 68.9 million this year.  In the US, electric output from all renewables surpassed electricity from coal for the first time since the 1880s, and coal has essentially collapsed as a utility fuel – from a peak in 2008 at around 23 quads (Quadrillion BTUs), it’s now producing around 12 quads, as the graph at the link above powerfully illustrates.

And it isn’t just a question of generating electricity.  Large-scale battery storage, a long-time dream of clean power advocates, is expanding rapidly.  15 small-scale 9.95 MWh systems will support peak generation while smoothing out price spikes in Texas, and the state symbolized by the oil rig is already the nation’s leading wind generator.  In California, PG&E is negotiating 1.7 GWh of storage with the state – more than ten times the power of the Texas sites mentioned above.  Perhaps the single most striking change is the cost of solar energy;  between 1980 and 2012, the cost of solar modules fell by a stunning 97%, and those costs keep dropping, just as solar cell efficiencies climb to as high as 47% in some experimental designs.  Underpinning all of this is a simple, unignorable fact – renewables are now less expensive than fossil energy sources.  Markets are responding – unevenly in some locations, swiftly in others but responding all the same.

The task that remains is immense.  There is considerable doubt whether the goal of limiting further warming to 1.5 degrees C to avoid the worst of potential climate damage can be reached.  There isn’t all that much time left.  Lofty pledges of zero-emission goals by companies and countries by 2050 are fine, but we’ve already used up 1.5% of the time remaining between 2020 and 2050 to achieve those goals.  And yet, for the first time, there now appear to be enough tools on the bench – technological and economic – to let us get started on meaningful work.

Clean Energy: Employment and Economic Impact

So, when we talk about someone employed in “clean energy”, what does that cover?  Like “manufacturing”, many things. The Bureau of Labor Statistics (BLS) defines and tracks employment by sector, but it’s not the most user-friendly resource.  So, while BLS notes that there were nearly 6,000 wind turbine service techs employed in May of 2020, it divides them among five different industries, ranging from utility construction to consulting to local government.  Sadly, a BLS plan to categorize and track clean energy jobs begun in 2010 was abandoned in 2013 during a federal budget shutdown, and has never resumed.

More generally, clean energy jobs fall into four broad categories – energy efficiency (home upgrades or commercial building retrofits); renewables (solar, wind, biogas, or geothermal energy); grid and storage (electrical engineering, battery tech, and charging stations); and cleaner vehicles and fuels (hybrid and electric vehicle manufacturing or biofuel production).  Altogether, more than 3.3 million Americans work in one of these fields, and it’s worth noting that energy efficiency alone employed more than twice as many people as all fossil energy sectors combined.

Like nearly everybody else, clean energy workers have taken a hit in this economy.  About 147,000 jobs were eliminated in March, and April totals nearly tripled that.  More than 590,000 jobs in the sector evaporated by April 30th, two months ahead of projections by BW Research.  The same analysts now expect around ¼ of all green energy jobs to be gone by June 30th, some 850,000 in all.

Under the circumstances, this isn’t surprising.  Homeowners are unlikely to invite insulation crews into their homes in the midst of a pandemic.  Financial chaos means that banks are less likely to lend on large-scale clean energy deployments.  Cities facing budgets collapsing under tax shortfalls are going to emphasize essential services before clean energy buildouts.  And utilities are facing tumbling energy demand.  IEA estimates that from February through April, global demand for energy dropped 6%, the equivalent of all of India.  American energy demand is set to drop 9%, according to the same report.

Whatever the course of economic contraction and recovery, there are certain irreducible advantages to jobs in these industries.  To begin with, they tend to be site-specific.  Many renewable energy jobs are unlikely to be outsourced – those building and maintaining a thermal solar plant in Arizona, for example, are going to build and maintain it in that location for its useful life.  The same holds true for energy efficiency professionals – the homes and buildings in the United States aren’t going to offshore themselves.

Many skilled green energy jobs pay relatively well, can boost stressed economies and don’t require four-year degrees.  Wind turbine techs, for example, exemplify this beneficial clustering.  Wind turbines require regular service and maintenance, and wind farms are located largely in rural areas in the Midwest and southern Plains.  Technicians tend to live in smaller cities or towns near these sites, supporting the local tax base.  Median income for a turbine technician in 2019 was $52,910, which could go a long way in Russell County, Kansas or Alliance, Nebraska.  And training for the field takes one or two years, depending on program and specialization. Median income for solar installers was lower, but in 2019 stood at $44,890 per year, and for insulation crews, median income in 2019 was $44,180,

The issue, at least for now, is that the three specific categories mentioned above don’t employ very many Americans – about 75,000 in all in 2018 and 2019, according to BLS.  But broaden the focus, and green energy’s economic becomes clearer – and bigger.  Wind energy’s total economic footprint alone is already substantial.  In 2018, 530 plants in 43 states produced components – blades, nacelles, turbines, gearing and digital control systems. Outsourcing of some of this manufacturing is possible, but given the size and weight of components as turbines grow taller, is likely to remain largely here at home.  Moreover, the Department of Energy estimates as many as 600,000 jobs in all subsectors of wind energy in less than 30 years.

This kind of job generation potential is what makes remaking America’s energy system so important to inclusive economic recovery.  Utilities, states and cities are already beginning to implement plans to change how we generate and distribute energy in a carbon-constrained world.  These efforts have been patchy and slow, and to date unlikely to meet even minimal Paris Agreement standards.  But under the right circumstances, policy changes, like technological changes, can happen quickly.  Emphasizing the very real benefits of more clean energy jobs may help speed that vital process.

Renewable Energy From 30,000 Feet

So where, as COVID redefines economies and politics, is the renewable energy sector?  What happens over the next few years – to technologies, investments, deployments and incentives – will determine multiple trajectories.  These include the jobs of millions of people, how quickly carbon accumulates in the atmosphere and oceans, and the possibility of stranded assets hampering any rapid, substantive switch from old to new.

If you’re thinking purely in terms of dollars and cents, the latest issue of Forbes has a fascinating article.  A joint study by the International Energy Agency (IEA) and Imperial College London reviewed returns on energy investments starting in 2009.  Combining German and French stock market data, the past five years showed returns of 178% for renewables and -20.7% for fossil energy.  UK renewable stocks returned over 75%, legacy energy 8.8%.  Here at home, where utility-scale renewable buildouts began later than in Europe, renewable returns were north of 200%, while oil, gas and coal stocks didn’t quite double.  Renewable investments proved more stable over the same periods measured.  But the same article notes that the biggest fossil energy shareholders – pension funds – are reluctant to disinvest from dividend-rich stocks.

Beyond that, an ostensible renewable energy transition is up against multiple countervailing factors – for starters $900 billion or more in potential “stranded assets” of global fossil energy companies.  The oil majors have talked a good game for years now, but the numbers don’t bear out their proclaimed commitments to renewables.  Exxon is now in court for, among other things, bragging on its green energy tech while spending less than ½ of 1% of revenues on renewable energy.  In 2019, BP projected spending between 3% and 8% (at best) of capex on renewables, and in February the company dumped an advertising campaign highlighting renewables.  And so on.

American utilities face the same kinds of stranded asset risks, though only 18% of utility employees view sunk costs in infrastructure as a top worry.  But power plants can be ferociously expensive to build.  Evergy’s Iatan 2 project, which went online nearly 10 years ago, came in at nearly $2 billion, with state-of-the-art environmental retrofits of the Iatan 1 plant adding to costs.  It can take large projects like this decades to pay for themselves; securitizing early retirement of fossil fuel plants can blunt risks to utilities, but so far has only been tried in three states.

Even bigger picture – there’s a substantial inertia built into an energy economy created more than 100 years ago – a vast, complex system that works remarkably well to meet the needs of its customers.  To date, renewables are still a small slice of total US electricity output.  In 2018, natural gas generated about 35% of our electricity, coal about 27%, nuclear a bit over 19% and all renewables, including hydroelectric, not quite 17%, with niche sources making up the rest.

To be clear, renewable energy’s recent eclipse of coal in the US has been remarkable.  In fact, the US Energy Information Administration (EIA) announced the very day this was written that in 2019 consumption of energy produced from renewables passed that produced by coal, the first time per EIA that this has happened since before 1885.  But a decarbonized energy economy is still decades away.  The International Renewable Energy Agency (IRENA) estimates that to even approach climate goals, renewables must increase to around 65% of global Total Primary Energy Supply by 2050 – and we’re nowhere close to that yet.  More on all of the above, COVID impacts and the state of play in our next renewable installment.

COVID-19 Impacts: Ethanol and Its Discontents

Carnage in the conventional energy sector has drawn a lot of attention in the past few weeks.  But the collapse of recent months was presaged by mediocre performance stretching back literally years.  Total returns for the Standard & Poor Energy Sector for 2019, including dividends, were a paltry 6%.  And for the entire decade of 2010-2019, the same sector was up 34%, by far the worst performance of the 11 sectors S&P tracks.  The fracking revolution, it turns out, created a world awash in oil and gas, but didn’t do much to help the industry that created it.

Which brings us to a related question – if oil & gas are in trouble from COVID-19 and from a decade of overproduction and low prices, what has the ongoing turmoil done to alternative fuels?  In particular, since KC Clean Cities operates in the biofueled, beating heart of the Midwest, what’s happened to biodiesel and (particularly) ethanol?

A bit of backstory:   more than 95% of vehicle gasoline sold in the US is a 10% ethanol blend.  There are several reasons for this.  Until about 15 years ago, a compound known as MTBE (methyl tertiary-butyl ether) was blended with gasoline to add oxygen.  As a result, gasoline burned cleaner, and cut smog-forming chemicals and toxins like benzene in exhaust.  But there were problems – MTBE leaked into groundwater from gas station tanks, creating water quality problems.  Moreover, it’s listed as a potential carcinogen.  Enter ethanol, exit MTBE with the Energy Policy Act of 2005.

Like MTBE, ethanol adds oxygen to gasoline and cuts smog-forming emissions.  Unlike MTBE, it’s also a way for America to deal with its massive agricultural surpluses by distilling a value-added product from corn. (It’s worth noting that ethanol now accounts for 40% of all the corn we grow.)

With the Energy Independence & Security Act of 2007, Congress created a mandate that steadily increasing amounts of renewables would be blended into America’s fuel supply – 36 billion gallons by 2022.  This is the Renewable Fuels Standard, which has been hotly debated over the last few years in Washington and elsewhere.

So far so good.  Refineries and fuel importers had a choice – they could blend steadily increasing amounts of renewable fuels.  Or, if they didn’t want to, they could use RINs – Renewable Inventory Numbers – attached to each gallon of renewable fuel produced.  Pecos Pete’s refinery has already hit their required volume of ethanol blended with gasoline for the year, but they keep on blending.  Why?  Because Brownsville Bob’s refinery hasn’t blended any ethanol into their gasoline.  However, Bob can stay in compliance by buying RINs from Pecos Pete, with the price set by the RIN market.

There’s also been a safety valve built into the system, called the Small Refinery Exemption or SRE.  “Small” is relative, but refineries with less than 75,000 barrels per day as of 2006 qualify, and can petition EPA to be excused from renewable fuel blending.  And this is where the fur begins to fly.  Between 2016 and 2018, the EPA granted a total of 85 small refinery exemptions, a big jump that removed a total of 4 billion gallons of mandated demand from the market.  This has been a sore spot with farmers, but hardly the only one.  The ongoing trade war with China has dried up what was a major market for ethanol, corn and distiller’s grain, a byproduct of the ethanol production process used as animal feed.  Allowing year-round sales of E-15 – that is, gasoline that is 15% ethanol by volume hasn’t made much of a dent, since relatively few gas stations sell it even though all light-duty gasoline vehicles 2001 or newer are approved to use E15.

And now, COVID.  Just as Texas and Oklahoma oil producers and refineries don’t have any place left to store their crude and refined products as consumer demand collapses, ethanol producers are running out of storage.  Federal Reserve research shows US ethanol production down nearly 50% since the beginning of 2020.  73 out of 200 total plants nationwide are shut down, while another 71 are on reduced production schedules.  At least two dozen ethanol plants are now producing alcohol for hand sanitizer, but at low volume, much of which will be donated anyway.

For the time being, the sector seems to be shaking its way into stasis.  Whatever shape the ethanol industry takes in 2021 and beyond will depend for now on what the virus does– and how we respond – in 2020.

For additional details on why this matters, please check out our guest blog posting by David VanderGriend of the Urban Air Institute.  Fuel blending standards can sound arcane, and the details of ethanol and corn and agriculture seem like something taking place in distant, rural counties.  They’re not.  They impact the lives of residents of metro Kansas City every day, and at the fundamental level of our own health.

Higher COVID-19 fatality rates among urban minorities come down to air pollution

Written by David VanderGriend – This post also appeared in the Kansas City Star

A startling reality has surfaced from the coronavirus health crisis: Pollution has been significantly reduced in recent weeks during the shutdown. Whether in New Delhi, Kansas City, New York, or Beijing, less driving has resulted in cleaner air. Vistas that previously were only foggy images have burst through as crystal clear pictures of what clean air actually looks like. If we thought we were cleaning the air before, we now see we can do better.

The fact that reduced driving equates to reduced pollution is not a surprise to many of us in the fuel business who have studied and understand the negative aspects of our reliance on petroleum alone. And it relates to a second disturbing reality: Minority communities are disproportionately contracting COVID 19 because of the poor air quality resulting from the traffic congestion of the inner cities.

In establishing the Urban Air Initiative, our objective was to improve fuel quality, while recognizing that eliminating the internal combustion engine is neither an immediate nor practical strategy to reducing pollution. With more than 260 million cars registered in the U.S., we will continue to rely on gasoline for the foreseeable future — but we can identify the most harmful components of gasoline and replace them. Ethanol, for example, is a superior substitute for the family of benzene octane gas additives that produce microscopic particulates and are linked to a range of respiratory and other ailments.

In naming our organization the Urban Air Initiative, we did so knowing urban areas are disproportionately subject to harmful auto emissions, and that they are where the most help is needed.

And who lives in urban areas? The very minority groups feeling the brunt of the coronavirus crisis. New York City reports that inner city minorities are experiencing the highest fatalities from COVID-19, and Midwest cities such as Chicago and Milwaukee are similarly affected. So an obvious question is whether these people were predisposed to getting sick by virtue of simply living in urban areas. Our research has always suggested that is the case, but a new study from the Harvard School of Public Health is one of many research efforts that come to this conclusion.

The most important finding of the study is that people living in counties in the U.S. that have experienced a higher level of air pollution as measured by the Environmental Protection Agency over the past 15 to 17 years have a substantially higher COVID-19 mortality rate. And we believe pollution is much, much worse than what the EPA measures. Particulates associated with coal fired power plants or diesel fuel are just part of the story. Much smaller “ultra-fine” particulates that are literally microscopic are essentially unregulated and unreported.

In our correspondence with the EPA, the agency has conceded its modeling fails to capture these tiny particles and their precursors. It has long been understood that fine particulates linger in the air and travel great distances, with data showing anyone within 300 yards of a congested roadway is exposed. Now imagine the impact in an urban area, be it midsize Kansas City or mega-size New York, where pedestrians are within mere feet of automobiles on every corner and tall buildings trap the emissions. Now enters the coronavirus, attacking the same respiratory system that has long been compromised by near-roadway exposure.

The Harvard study pulls no punches in coming to its conclusions: “The majority of the pre-existing conditions that increase the risk of death for COVID-19 are the same diseases that are affected by long-term exposure to air pollution. … The study results underscore the importance of continuing to enforce existing air pollution regulations to protect human health both during and after the COVID-19 crisis.”

The takeaway here is that this is of course a nationwide problem, but it is most concentrated in our cities. All Americans — minority or not — need to understand they were already at risk, and will continue to be until we reduce emissions and improve our fuels.

David VanderGriend is president of the 501(c)(4) nonprofit Urban Air Initiative in Colwich, Kansas. Urban Air Initiative is a member of MEC.

MEC’s Response to COVID-19

As we all shift our routines in an effort to stay safe and healthy in light of the COVID-19 pandemic, Metropolitan Energy Center is exploring ways to adjust to the new normal. We want you to know we share the collective confusion and frustration of our friends, neighbors, and colleagues. Please remember we are all in this together. Be patient, be kind. And if you need us, we’ll be here, because we have been for over 35 years.

What We’re Doing

As the situation evolves, we are continually adjusting our response. At this time, our dedicated staff are working from home, in consideration of the CDC recommendations and in compliance with the KC Metro stay-at-home order, effective Tuesday, March 25. We are finding innovative ways to support our communities and continue our technical support for regional alternative fuels and energy efficiency advancements.

Staff can best be reached by email, though phone calls are still welcome and will be routed to the appropriate staff as soon as possible on the day the calls are received.

For scheduled meetings and events:

  • All in-person meetings and events for the next 8 weeks are postponed, moved online, or cancelled.
  • Scheduled conference calls will go on and will now offer a web connection in case you are unable to join through a phone connection.

For projects and project deliverables:

  • Staff are conducting a COVID-19 risk assessment for all ongoing projects. If you are involved in a project and believe restrictions due to the crisis present a risk to you meeting your objectives, please notify your MEC staff contact immediately.

Hidden Costs and Silver Linings

This pandemic is something new for nearly all of us. Some Americans—those 75 and older—will remember the polio epidemic of the 1940s and 1950s. But for most of us, this means making changes in the ways we work, live and travel that we’ve never experienced before.

If there’s any sort of silver lining to this situation, it’s that finding new ways to work and move in the next months may lead to longer-term solutions that can improve health outcomes for everyone. COVID-19 is a respiratory illness, and good respiratory health is critical—now, in dealing with this disease, and for our community’s overall health in the future. MEC has worked for decades to cut toxic emissions with energy efficiency, cleaner fuels, intelligent transportation and building systems, and a cleaner, more efficient freight network. This work continues, with our diverse community and stakeholders in mind, and is more critical today than at any other point in history.

What You Can Do

#StayHomeKC. On March 21, elected officials in Jackson, Johnson and Wyandotte counties and the city of Kansas City, Missouri, announced a 30-day stay-at-home order. Other counties in the region have enacted various restrictions to help slow the spread of COVID-19. State and local guidelines are changing rapidly as more cases are confirmed.

For the latest information, check your local health department or city/county websites.

If you should venture away from home, please remember: exhaust irritates lungs. For the sake of those experiencing respiratory difficulty, turn off your engine if you will be waiting for a friend carpooling with you, for car-side delivery service, etc.

Take advantage of your reduced commute time to get outdoors more. Biking, walking and hiking can be done alone, with your pets, or in small groups adhering to social distancing practices.

Some outdoor volunteering opportunities may continue, in small groups adhering to social distancing practices, especially orgs doing wildland management, gardening and cultivation, tree planting, and the like. Carefully evaluate your host’s safety and health policies and practices before signing up. Due to the stay-at-home order, many of these events may be cancelled as well, so contact your host to confirm before showing up.

If you’re a volunteer and miss in-person group volunteering events, stay engaged through GlobalGiving. GlobalGiving’s virtual skilled volunteering platform, GlobalGivingTime, can match you with interesting opportunities from vetted nonprofits around the world, from the convenience of your desk.

Stay Informed

Metro KC officials are keeping PrepareMetroKC.org updated as new information becomes available.

As you know, this situation is continually shifting. We will monitor developments to adhere to federal, state and local advisories, and support the region’s efforts to protect the health and safety of the public.

The Electric Car Experience – POSTPONED

You’ve seen them, even if you weren’t really looking. A Tesla zipping along I-435, a Leaf silently moving across the grocery store parking lot, a Bolt gliding by the gas station as you filled up. Electric cars are increasingly part of America’s automotive landscape, though still a small percentage of what’s on the road today.

So, ever wonder what it would be like to drive one? Well, here’s your chance.

Metropolitan Energy Center, with generous support from Evergy, is rolling out the Electric Car Experience. It’s a zero-pressure way for you to drive multiple makes and models of all-electric cars and plug-in hybrids.  Stay in town?  Hit the highway?  Your choice.  And all done without sales staff, and with volunteers who own and drive their own electric cars.

The Electric Car Experience is coming POSTONED to United Methodist Church of the Resurrection in Leawood at 13720 Roe in Leawood, from 10:00 to 4:00. COR has kindly offered the use of their space as part of their commitment to a more sustainable world. We’ll have our EV fleet in the parking lot just south of the sanctuary.  All you’ll need to do is follow the signs.

Consider this blog entry a placeholder.  All registrations to test drive (or just ride along, if you prefer) will be done online and hosted by Evergy.  Watch this space for further details in the next few weeks!

If you own an EV or PHEV, and would be willing to volunteer, we’d love to have you along for the ride. Please visit https://metroenergy.org/ev-owner-signup/ to learn more and sign up for this exciting outreach event.