By Jenna Znamenak

This article chronicles recent efforts by Metropolitan Energy Center (MEC) and its Clean Cities Coalitions to make electric vehicle operations a reality in areas that are often left out of new connectivity trends. 

To a person who has always lived in a highly populated city, connectivity is a daily reality. Cities get the fastest internet, the most cell coverage, and more nicely paved trafficways. But for the 20% of the population of the United States who live in rural areas, equal connectivity has never been the norm. 

As reported in the January/February issue of the Kansas Government Journal by Mike Scanlon, City Manager of Osawatomie, Kansas, “It is no secret that rural communities are historically left behind when the United States adopts the latest technology.” And in recent months, more rural leaders are seeing a potential pitfall that could widen the access gap for their communities: the advancement of electric vehicles (EVs). 

As the latest consumer-use scenarios are analyzed and early-adopter reviews roll in, the reality is clear: EVs cost less money to fuel and to maintain than their gasoline-fueled counterparts. And with the recent monumental increases in grants and tax incentives for EV purchases, governments are becoming much more interested in EV funding pipelines than they are in vehicles fueled by oil pipelines. But urban and suburban governments are making the switch much faster than rural governments. 

Scanlon is not surprised, but he is hopeful that this time rural America can keep up with the trend. “By 2030 the federal government proposed that half of all new cars sold in the U.S. will be zero-emission vehicles, with 50,000 electric charging networks. By proactively supporting rural EV development now, we can prevent history from repeating itself.” His article in the Kansas Government Journal, co-written with MEC’s Central Kansas Clean Cities Coalition coordinator Jenna Znamenak, prepares rural leaders with real facts and funding connections so they can stay in the fight to stay connected. 

The most exciting grants on the list are the ones that get rid of nitrous-oxide-producing diesel school buses by helping school districts convert to EVs, for little to no cost to the schools. “These grants replace older school buses with electric school buses to reduce harmful emissions around children,” says Central Kansas Clean Cities coordinator Jenna Znamenak. But she says there are enough programs available through MEC’s grant assistance to help more institutions than just schools involved with the national sea-change. 

For many rural leaders, adapting to standardizing trends sounds like “small budgets with not much room for experimentation, time constraints that do not allow us the ability to learn about technology, and grant opportunities that can look like a 10-acre corn maze,” says Scanlon. “That’s why we’re here for you—we’ve helped connect local communities and fleets to easier funding for clean energy for the past 40 years,” says Znamenak, referring to MEC’s stockpile of resource-accessing tricks and their dependable grant assistance services. 

See the original article published in the Kansas Government Journal here

To stay current on all available funding, sign up for MEC’s free newsletter at metroenergy.org/newsletter-sign-up. To talk to an expert about your next clean energy project, call 816-531-7283. 

Like many technologies, the windmill is nothing new.  People have been using the wind to grind grain and pump water for over a thousand years.  If not for the windmill, there’d be no Netherlands as we know it.  Settling America’s plains states during the 19th Century would have been nearly impossible.  But the use of wind to generate electricity at scale is new, going back only about 30 years.  In that short time, this evolving technology has produced the biggest single leap in renewable electricity output since the Age of Dams in the early-to-mid 20th Century.

In theory, generating electricity from wind is simple.  Air moves over the turbine blades, generating lift and setting the system in motion.  The shaft on which the blades are mounted rotates.  In doing so, it spins a magnet inside the generator’s windings, producing electricity.  Turbines can be direct-drive systems, but most use gearboxes to speed up their blades, since higher RPMs generate more efficiently.  The electricity produced by the turbines hits the grid and powers everything from toasters to cities.  Simple, no?

The Where Of American Windpower

Well, not quite.  There are more than a few complications.  Wind is generated by the sun’s heating of Earth’s surface, which is uneven.  Geography, climate and terrain add more variability.  Result – the wind blows reliably only in certain regions.  In America that means the Midwest , especially the Great Plains.  That’s why Texas leads the country in wind energy capacity, with Iowa, Oklahoma, California (outlier!) and Kansas in spots two through five.  And that’s why eight contiguous states in the southeast to date have zero installed capacity.

Onshore, the strongest winds blow in thinly populated states far from power-hungry big cities.  Transmission lines can cost millions of dollars per mile, and they’re not always popular, locally or politically.  And as the seasons change, so does the wind.  On the High Plains, America’s wind power sweet spot, output falls during the hottest months, when electrical demand for cooling spikes, rising again during winter.

Upsides – Income & Jobs

However, there are multiple benefits to wind.  Unlike coal or uranium, the wind is free.  Building turbines means leasing land.  Those leases bring in between $5,000 and $8,000 per unit per year to farmers or ranchers, though they can also limit construction and access by landowners. Turbine maintenance means turbine techs.  More than 7,000 Americans are already working in this fast-growing sector, with median pay of nearly $53,000 per year.

Efficiency keeps improving.  In much of America, the higher off the ground, the stronger the wind.  Taller turbines are taking advantage of that fact.  Between 2000 and 2018, average turbine height jumped nearly 100 feet, with bigger units providing more power.  And the environmental benefits of wind energy are substantial.  Beyond the carbon embedded in building and installing the systems, electricity from wind is carbon-free.  As markets for clean energy credits grow, and clean energy demand grows, so does the financial case for wind.

Rapid Growth And What’s Next

For all these reasons and more, wind’s growth has been simply explosive.  In 1990, wind provided 3 billion kWh, or about 0.1% of all electricity.  10 years later, it had doubled, and was still stuck at about 0.1% of the market.  Total share in following years:  2005 – 0.4%; 2010 – 2.3%; 2015 – 4.7%; 2019 – 7.3% – the same year that wind overtook hydropower.

But this intermittent (though clean) energy source has limits.  Surpassing those limits means going to sea.  That’s because offshore wind potential in the United States is about twice the nation’s current electricity demand.  But offshore wind power is almost non-existent here, with exactly one site currently up and operating.   Beyond that, grid upgrades and the addition of large-scale energy storage are going to be necessary for wind energy to make its next big jump.