Posts

Batteries are ancient, by today’s tech standards.  Benjamin Franklin is the first person we know of to use the term, and the first published science on the topic dates to 1791.  The days of metal disks stacked in brine are long gone (except in middle school science class).  Lead-acid batteries in cars and golf carts are still common and will be for years, given their low cost.  But the focus here is on the next generation of large-scale systems.  And the question is how these batteries – bigger and more powerful than anything we’ve known  can redefine and remake the world’s electrical grid. 

You’ve likely heard the expression “lightning in a bottle”.  Storing electricity at industrial scale is very much like that.  Electricity moves fast.  In copper wire or other conductors, it’s traveling at somewhere between 50% and 99% of the speed of light.  And in grid operations, it has to be sold – that is, used – as soon as it’s produced.  If it isn’t, grid and utility engineers run the risk of power plants disconnecting, since they’re only designed to run in a very narrow range of conditions.  What this next generation of battery tech provides is a way to store that electricity and in doing so provide a whole basket of benefits – financial, technical and environmental.   

Arguably the biggest single benefit battery storage provides is the ability to capture electricity from renewable sources.  Obviously, the wind doesn’t always blow.  And even when it does, that’s an issue in itself.  In February 2017, the Danes powered their entire country for 24 hours on windpower.  But if a wind farm produces more power than needed, the system operator must start shutting down turbines or face overloading the grid.  And while the sun defines “predictable”, solar plants only provide power for so many hours per day.  Large-scale storage means that intermittent, low-cost, and environmentally-friendly electricity can be stored now and used later.    

Having large amounts of electricity in storage and ready to go at a moment’s notice is a financial boost for power companies.  It means that utilities can sell back low-cost power from renewables to meet peak demand; when power sells for far more than it cost to generate.  It also means that utilities can meet their own demand spikes without having to pay the often-bruising high prices electricity markets produce at peak demand. 

There’s more.  Energy storage can improve the system’s operating reserve.  Like energy, the grid is always moving – more demand here, less demand there, big storms and equipment failures now and again.  It’s a dance that never stops.  Engineers and analysts meet these constant changes with machines and data to keep the system balanced.  But they are never 100% correct in predicting what will happen on any given day.  Having stored reserve power that can be deployed in seconds boosts the operating reserve, and in doing so, boosts grid stability.  Improving stability can mean lower infrastructure investment costs.  It can also cut the costs of “black starts” when generators go down.  Typically, they have to be restarted with diesel generators, but battery systems for just this purpose have already been successfully tested. 

So, what do utility-scale batteries look like?  Imagine shipping containers lined up in an electrical substation, or row after row of gigantic desktop computer towers.  The Hornsdale Power Reserve, in South Australia, was designed and built by Tesla.  It uses lithium-ion batteries (like in your computer) and provides 129 MWh of power – enough to supply all the electricity for about 3,500 homes for an hour.  These projects sound large, though total deployments to date are tiny – globally about 6 GWh through 2018.  But there’s one simple fact that you need to remember.  In 2010, commercial battery packs cost about $1,100 per kilowatt-hour.  By December 2019, that price had fallen to $156 per kilowatt-hour, a drop of 87% – and nearly 50% of that total decline came in the preceding three years.  With costs set to break the $100 mark by as early as 2024, batteries are increasingly likely to be included in energy infrastructure and development for years to come. 

Kansas City International Airport is no stranger to cleaner fuels.  It began deploying compressed natural gas (CNG) buses back in 1997providing natural gas on site with its own high-speed fueling station.  This made the Aviation Department something of a pioneer in alt-fuel adoption.  The next step, though, was a big jump in fuel efficiency, and in October of 2017, KCI became the first US airport to deploy all-electric shuttle buses.  It’s currently running 7 BYD K7 battery-electric shuttles along with older CNG units. 

There’s no getting around the fact that up-front costs for electric vehicles are going to be higher than for equivalent conventional buses.  In fact, when the airport rolled out data on the comparative costs of different fuels, the contrast was stark.  A brand-new diesel shuttle buses cost about $385,000; for CNG, add an additional 14% for a sticker price of $440,000.  All-electric models come in at a fairly eye-popping $540,000, more than 40% more expensive than the price for a baseline diesel.   

But as anybody who’s bought a car knows, the sticker price isn’t the only price.  The sticker price, in fact, is only the beginning of years of recurring costs.  Kenny Williams is the Fleet Asset Manager for the Aviation Department and one of the main proponents of the EV deployment back in 2016-17 as the project began to take shape.  He broke it down as follows: 

Costs Per Mile (Including fuel and maintenance) 
  • Diesel – variable/volatile fuel prices; approximate costs $1.50/mile 
  • CNG – more stable fuel prices; approximate costs $1.00/mile, $0.45-.50 w. alt-fuel tax credit 
  • Electric – fixed fuel prices; approximate costs $0.50/mile 

Maintenance costs add up quickly for the shuttle bus duty cycle.  Oil changes for CNG units are about $170 and have to happen every other month.  Annual tune-ups add an additional $3,800 to CNG bus operating costs.  So, even with fuel at an economical $0.50/gallon thanks to the clean fuel tax credit, CNG bus maintenance per year comes in between $4,800 and $5,000 per unit.  It’s not like EV buses float on air.  Like CNG units, they need new tires, and fluid changes every 18 months add annual costs of about $165 per year.  But no internal combustion engine means no tune-ups, avoiding the lion’s share of regular maintenance overhead. 

And yet, even with maintenance savings of around $50,000 per bus over ten years, there’s still a big price gap between diesel, CNG and electric buses.  That’s where federal clean-fuel funding comes in.  Thanks to support from the US Department of Energy, KCI was eligible for reimbursements of $72,000 per bus, dropping their costs to just $2,000 more than comparable CNG shuttles.   

The same grant, “Accelerating Alternative Fuel Adoption in Mid-America” provided funding for charging infrastructure, covering about $100,000 of $225,000 in construction and equipment costs for the new systems.  KCI’s electric bus charging lot has eight pedestals installed, with space for an additional four slots if more EV units are purchased  Charging time is about three hours, and this “fueling” process hasn’t had any negative impact on operations.   

Kenny Williams talks EV bus duty cycles at the airport’s charging lot.

What has the driver response been like?  Per Kenny Williams, “For most drivers, once they drive them, they really like them.”  The only minor hitch has been how drivers operate the bus HVAC systems – since they are battery-driven, power loss from cranking up AC or heating at full throttle can take a bite out of driving range when a gentler touch would work better. And KCI is planning on investing in additional EV units.  The economic toll of the pandemic has postponed acquisition of a few of the 12 units originally planned.  However, the Aviation Department is planning on ordering three more units in addition to the seven already in service.  These new buses will be slightly different.  They’ll have inductive charging systems, which will let them power up without cords or plugs, as they pick up passengers at the new terminal starting in early 2023.   

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Program under Award Number DE-EE0008262 . 

Metropolitan Energy Center (MEC) announces the first placements of all-electric zero-emission Class-8 yard trucks into service under a new grant project. The project, “Electrifying Terminal Trucks in Unincentivized Markets,” is the result of partnerships from Kansas City to Chicago, whose goal is to electrify terminal trucks in our regional market. The first placements of four planned have taken place at funding recipient Firefly Transportation Services. Based in Glenview, IL, Firefly provides zero-emission transportation options to freight yard, port and cargo sites, along with training and site preparation for all-electric operations.

The vehicles funded under this grant are manufactured by Orange EV. Based in Riverside, MO, Orange EV designs and manufacturers all-electric yard trucks right here in the heartland. They are also the first American company to commercially build, deploy and service 100% electric Class-8 electric vehicles. Before this year, Orange EV had yet to deploy one of their vehicles in the Kansas City area. Jason Dake, Vice President of Legal and Regulatory Affairs at Orange EV stated, “Not selling one of our trucks in our own backyard was a thorn in our side for a while,” he continued, “Seeing additional trucks deployed in the metro area through the project is a great feeling and most importantly, they are helping our community and improving the air quality for Kansas Citians.”

Additional funding recipients with all-electric truck placements planned in the near future are the Johnson County Wastewater Department in Leawood, KS and Hirschbach Motor Lines, a private long-haul carrier with emphasis on refrigerated and other specialized services. Hirschbach will deploy their truck at a client site in Wyandotte County, KS. Both Evergy and the Unified Government of Wyandotte County, Kansas City, Kansas Board of Public Utilities will provide technical assistance, as needed, on electrical service and electric rate guidance.

Orange EV will also take possession of a demonstration truck to provide potential customers across the U.S. up to a 2- to 4-month trial period. During the period, they can use the tractor free of charge, viscerally demonstrating air quality, noise-reduction and cost-savings benefits in their unique work environments.

Yard trucks (also known as hostlers, terminal tractors, goats or mules) are designed to pull cargo containers and semi trailers in freight or intermodal yards, or at large manufacturing sites. The workload for these trucks is intense, pulling heavy loads almost continuously. The power required means that most yard trucks are diesel, which results in a great deal of diesel exhaust, one of the worst pollutants and a major source of poor air quality. Diesel exhaust is not only a health risk for workers on site, but it also threatens communities surrounding industrial zones, typically low-income neighborhoods. Even worse, low speed, high-power operations emit much more soot and other particulates than diesel operations at highway speeds. Systematically replacing diesel yard trucks with electric models could substantially boost air quality in and around America’s busiest freight hubs. At the same time, the cost savings both from eliminating diesel fuel and from operating a much more efficient electric powertrain is an attractive advantage.

However, the project is not only about improving air quality and saving money. Another key goal is to gather data on electric truck operations to validate broader deployments of battery-powered yard trucks. Telematics and data, supported by fleet interviews and operational evaluation, will be analyzed by another project partner and nearby neighbor, Missouri University of Science and Technology. Ultimately, MEC will create a deployment guide based on the real-world experiences of our project partners in Chicago and Kansas City so fleet operators across the country can make the move to cleaner, more efficient freight handling.

To learn more about this project or to request the demo truck for your work site, please contact Emily Wolfe.

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Award Number DE-EE0008887.

                It’s probably an overstatement to call propane America’s most overlooked fuel.  That said, it does kind of fly under the radar.   For many of us, our only interaction with it comes when replacing a cylinder for the barbeque grill.  But beyond the bottle cage at Lowe’s, and once you leave the city, propane is ubiquitous.  In America, if you’re in the country, you’re in propane country.  83% of all households that heat with propane are in rural areas.  In the rural Midwest, it’s close to 90%.  Propane is affordable and easy to purchase and use, thanks to a well-developed supplier network.

Part of oil and gas formations, propane is one of the natural gas liquids (NGLs) along with butane, pentane and a few more.  During oil and gas production, NGLs come hissing to the surface, mixed with natural gas.  They’re then separated during refining and sold as feedstocks for plastics, solvents, and (in the case of propane) for heating and fuel.  They are a small slice of the global oil and natural gas market, about 14% of output.  But as fracking has boomed in the past decade, nearly doubling American propane production, more auto manufacturers and fleet managers are taking another look at propane-powered vehicles.

Propane Power

Like any fuel, propane has its pluses and minuses for transportation.  Propane is less energetic than either gasoline or diesel.  You would have to use 1.38 gallons of propane to match the energy of a gallon of gasoline, and 1.52 gallons to equal a gallon of diesel.  The flip side is that propane is cheap – it typically costs about 30% less than gasoline and 50% less than diesel fuel.  It’s also far cleaner than diesel, producing far less in the way of smog-forming chemicals.  This means that many components of diesel emissions control systems – DPF regeneration, diesel oxidation catalyst, selective catalytic reduction, diesel emissions fluid – are eliminated by switching to propane.  Diesel emission controls work, but they also make for complicated, expensive maintenance.

But in the end, there’s still an impact.   Propane is still a fossil fuel, and still part of the big global machine that produces oil and gas, and also pumps ever-more carbon into the atmosphere.  Or at least it was a fossil fuel, until now.

The Renewable Difference

What’s new?  Renewable propane.  It’s chemically identical to fossil propane, but produces between 60% and 70% less carbon when used.

Renewable propane and diesel have some things in common with biodiesel.  All three can be made from the same renewable feedstocks, like corn oil, soybean oil, tallow and waste grease.  But the methods to produce these fuels are very different.  You can make biodiesel at low temperatures and at small scale, in laboratories or classrooms – there’s even a user’s guide for high school students interested in biodiesel.  But renewable diesel and renewable propane come from refineries, produced by some of the same processes as fossil fuels.  They’re chemically identical to their petroleum versions, and have the same properties.

As a clean-burning, low-carbon fuel produced from renewable feedstocks, there’s a lot to like about renewable propane.  This is especially true in major markets like California.  There, tough clean air standards give cleaner-burning fuel an edge over conventional options, and clean fuel credits can sweeten the financial picture for users.  Today renewable propane only accounts for somewhere between 1% and 2% of all propane output.  But prospects for rapid growth of this lower-carbon and completely renewable energy source seem bright.

Events

Come and join us to learn about Electric Vehicles and enjoy some delicious wine at a one-of-a-kind earth-friendly winery in our area. There will be live music and free wine tastings for those who show an EV key. Jowler Creek is the first certified sustainable vineyard and winery in the state. The winery has a Tesla destination charger and a Level 2 charger.

Learn about Electric Vehicles and see how you can save the Earth and your wallet! Numerous EVs will be on display by their owners and info will be available along with some cool freebies and a possible raffle.

Social distancing and masks are required.

Visit the Drive Electric Earth Day event page to register to attend, share your experience and/or show your EV, or find out more on this event and other Drive Electric Earth Day events around the country.