Posts

Kansas City International Airport is no stranger to cleaner fuels.  It began deploying compressed natural gas (CNG) buses back in 1997providing natural gas on site with its own high-speed fueling station.  This made the Aviation Department something of a pioneer in alt-fuel adoption.  The next step, though, was a big jump in fuel efficiency, and in October of 2017, KCI became the first US airport to deploy all-electric shuttle buses.  It’s currently running 7 BYD K7 battery-electric shuttles along with older CNG units. 

There’s no getting around the fact that up-front costs for electric vehicles are going to be higher than for equivalent conventional buses.  In fact, when the airport rolled out data on the comparative costs of different fuels, the contrast was stark.  A brand-new diesel shuttle buses cost about $385,000; for CNG, add an additional 14% for a sticker price of $440,000.  All-electric models come in at a fairly eye-popping $540,000, more than 40% more expensive than the price for a baseline diesel.   

But as anybody who’s bought a car knows, the sticker price isn’t the only price.  The sticker price, in fact, is only the beginning of years of recurring costs.  Kenny Williams is the Fleet Asset Manager for the Aviation Department and one of the main proponents of the EV deployment back in 2016-17 as the project began to take shape.  He broke it down as follows: 

Costs Per Mile (Including fuel and maintenance) 
  • Diesel – variable/volatile fuel prices; approximate costs $1.50/mile 
  • CNG – more stable fuel prices; approximate costs $1.00/mile, $0.45-.50 w. alt-fuel tax credit 
  • Electric – fixed fuel prices; approximate costs $0.50/mile 

Maintenance costs add up quickly for the shuttle bus duty cycle.  Oil changes for CNG units are about $170 and have to happen every other month.  Annual tune-ups add an additional $3,800 to CNG bus operating costs.  So, even with fuel at an economical $0.50/gallon thanks to the clean fuel tax credit, CNG bus maintenance per year comes in between $4,800 and $5,000 per unit.  It’s not like EV buses float on air.  Like CNG units, they need new tires, and fluid changes every 18 months add annual costs of about $165 per year.  But no internal combustion engine means no tune-ups, avoiding the lion’s share of regular maintenance overhead. 

And yet, even with maintenance savings of around $50,000 per bus over ten years, there’s still a big price gap between diesel, CNG and electric buses.  That’s where federal clean-fuel funding comes in.  Thanks to support from the US Department of Energy, KCI was eligible for reimbursements of $72,000 per bus, dropping their costs to just $2,000 more than comparable CNG shuttles.   

The same grant, “Accelerating Alternative Fuel Adoption in Mid-America” provided funding for charging infrastructure, covering about $100,000 of $225,000 in construction and equipment costs for the new systems.  KCI’s electric bus charging lot has eight pedestals installed, with space for an additional four slots if more EV units are purchased  Charging time is about three hours, and this “fueling” process hasn’t had any negative impact on operations.   

Kenny Williams talks EV bus duty cycles at the airport’s charging lot.

What has the driver response been like?  Per Kenny Williams, “For most drivers, once they drive them, they really like them.”  The only minor hitch has been how drivers operate the bus HVAC systems – since they are battery-driven, power loss from cranking up AC or heating at full throttle can take a bite out of driving range when a gentler touch would work better. And KCI is planning on investing in additional EV units.  The economic toll of the pandemic has postponed acquisition of a few of the 12 units originally planned.  However, the Aviation Department is planning on ordering three more units in addition to the seven already in service.  These new buses will be slightly different.  They’ll have inductive charging systems, which will let them power up without cords or plugs, as they pick up passengers at the new terminal starting in early 2023.   

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Program under Award Number DE-EE0008262 . 

Metropolitan Energy Center (MEC) announces the first placements of all-electric zero-emission Class-8 yard trucks into service under a new grant project. The project, “Electrifying Terminal Trucks in Unincentivized Markets,” is the result of partnerships from Kansas City to Chicago, whose goal is to electrify terminal trucks in our regional market. The first placements of four planned have taken place at funding recipient Firefly Transportation Services. Based in Glenview, IL, Firefly provides zero-emission transportation options to freight yard, port and cargo sites, along with training and site preparation for all-electric operations.

The vehicles funded under this grant are manufactured by Orange EV. Based in Riverside, MO, Orange EV designs and manufacturers all-electric yard trucks right here in the heartland. They are also the first American company to commercially build, deploy and service 100% electric Class-8 electric vehicles. Before this year, Orange EV had yet to deploy one of their vehicles in the Kansas City area. Jason Dake, Vice President of Legal and Regulatory Affairs at Orange EV stated, “Not selling one of our trucks in our own backyard was a thorn in our side for a while,” he continued, “Seeing additional trucks deployed in the metro area through the project is a great feeling and most importantly, they are helping our community and improving the air quality for Kansas Citians.”

Additional funding recipients with all-electric truck placements planned in the near future are the Johnson County Wastewater Department in Leawood, KS and Hirschbach Motor Lines, a private long-haul carrier with emphasis on refrigerated and other specialized services. Hirschbach will deploy their truck at a client site in Wyandotte County, KS. Both Evergy and the Unified Government of Wyandotte County, Kansas City, Kansas Board of Public Utilities will provide technical assistance, as needed, on electrical service and electric rate guidance.

Orange EV will also take possession of a demonstration truck to provide potential customers across the U.S. up to a 2- to 4-month trial period. During the period, they can use the tractor free of charge, viscerally demonstrating air quality, noise-reduction and cost-savings benefits in their unique work environments.

Yard trucks (also known as hostlers, terminal tractors, goats or mules) are designed to pull cargo containers and semi trailers in freight or intermodal yards, or at large manufacturing sites. The workload for these trucks is intense, pulling heavy loads almost continuously. The power required means that most yard trucks are diesel, which results in a great deal of diesel exhaust, one of the worst pollutants and a major source of poor air quality. Diesel exhaust is not only a health risk for workers on site, but it also threatens communities surrounding industrial zones, typically low-income neighborhoods. Even worse, low speed, high-power operations emit much more soot and other particulates than diesel operations at highway speeds. Systematically replacing diesel yard trucks with electric models could substantially boost air quality in and around America’s busiest freight hubs. At the same time, the cost savings both from eliminating diesel fuel and from operating a much more efficient electric powertrain is an attractive advantage.

However, the project is not only about improving air quality and saving money. Another key goal is to gather data on electric truck operations to validate broader deployments of battery-powered yard trucks. Telematics and data, supported by fleet interviews and operational evaluation, will be analyzed by another project partner and nearby neighbor, Missouri University of Science and Technology. Ultimately, MEC will create a deployment guide based on the real-world experiences of our project partners in Chicago and Kansas City so fleet operators across the country can make the move to cleaner, more efficient freight handling.

To learn more about this project or to request the demo truck for your work site, please contact Emily Wolfe.

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Award Number DE-EE0008887.

At MEC, our job is to keep tabs on energy use in the central Midwest, but why should that matter? Because the ways that people and businesses use energy can affect lives. Technology has yet to come up with a solution that moves people and goods without releasing some sort of air pollution, and air pollution affects human health.  The problem is that every power source that can power a vehicle will create emissions and will have a carbon footprinteven electric vehicles.  There are, however, many alternative fuel options that arefar cleaner than gasoline and diesel.  If you’re looking for a vehicle that produces less emissions, there are a lot of factors to consider when making your decision. 

Let’s compare the different ways that the energy we use affects our health. In 2017 the emissions from vehicles on the road passed up the amount of emissions released from power stations.  That switch has shown up as health problems, such as the increase of child asthma cases for families living near highways and railroads.That’s simply because vehicle emissions get concentrated in the air around the places that people and goods get transported. Transportation emissions are now the #1 source of greenhouse gases too, making it globally important to choose our transportation wisely.  For the sake of our local and global health, we must decide to make transportation cleaner. The question now is how. 

For some, their ideal chosen solution is to walk or bike more places, and to only shop for things in stores within walking distance of their house.  But what if you need transportation?  Remember that COVID shutdowns produced sudden, startling air quality improvements the likes of which we haven’t seen in decades.  As residents of Los Angeles and New York saw with their own eyes, less vehicles on the road immediately improved their air quality, even in heavily polluted cities.  But the shutdown of society isn’t a realistic model for fighting climate change in the long run.  Movement of people and goods still must happen.  Are there cleaner solutions than what’s commonly used to move people and goods right now? The simple answer is yes.  For a more complete answer, here are options that make sense for our health, the economy and the environment. 

Electric vehicles (EVs), which plug in to an electrical supply to “fuel up, are creating a lot of buzz right now, and rightly so. All-electric vehicles have zero emissions coming out of their tailpipesso they appear to be the magic bullet for clean air around our roadways.  Plug-in hybrids are also great, in that they make use of electricity as a primary fuel, but are equipped with a fuel tank as a backup for longer trips.  EVs are great as urban or suburban family cars, transit buses, or local delivery trucks that rack up limited daily miles before returning to base to recharge.  Plus, long-range batteries, fast charging stations, and new heavy truck technologies are under rapid development, so the list of compatible uses is getting longer by the day.  

You may not realize that you can help your electrical grid become more efficient with the electricity being generated just by owning an EV and charging it at night.  The electrical grid is set up to estimate how much power is needed, and then generate slightly more than that amount to provide for our electricity needs.  Whatever electricity is generated at power plants either gets used, or it dissipates with non-use.  If you charge an EV overnight, it utilizes that energy that would otherwise be wasted. 

Biofuels are another cleaner transportation option available now.  They come from farm-produced food commodity byproductsthey emit substantially less air pollution when burnedand they’re surprisingly less expensive than the worst emission producers, gasoline and diesel.  Ethanol and biodiesel have been around for a while, and just like your cell phone, their design and our use of them has greatly improved over the last 20 years. 

In the 1990s, car manufacturers started figuring out how to protect the insides of vehicle fuel lines from the extra corrosiveness of ethanol blends, which is basically ethyl alcohol (moonshine!) mixed with gasoline.  By 2012, ethanol had busted into the mainstream, and most vehicle manufacturers now support up to 15% ethanol (E15).  To save money and get a cleaner burn in your vehicle, look for the E15 label on pumps at gas stations.  The added ethanol increases the octane, which is actually better for modern, more fuel-efficient engines.  Plus, the more ethanol mixed into gasoline, the fewer harmful, carcinogenic gases get released into the air around it All of this is why today most gasoline at the pump already has 10% ethanol in it.  You can choose higher blends if your vehicle is rated to use them.  Then it’s a matter of finding a local gas station where that blend is available to support your choice.  When you’re buying a family vehicle and want the option of using high blends of ethanol (E20-E85)ask to look at flex-fuel” options at your dealership Typically, a flex-fuel vehicle will have a yellow gas cap, indicating that you can safely use blends up to 85% ethanol, wherever you should find them. 

Biodiesel is another clean fuel option. It can be used in most diesel-fueled vehicles, and also supports the regional economy as a value-added farm product. It is a renewable fuel made from vegetable oils, primarily soybean and sometimes corn oil, but also from recycled cooking oil and waste fat. No, you can’t just pour the grease from your deep-fried turkey into your pickup. Just like petroleum, it has to be refined first, and biodiesel at the pump has excellent quality controlsMost diesel engines can use blends of biodiesel and petroleum diesel up to 20% (called “B20), which can be found at some area fuel stations. It’s also an easy drop-in fuel option for farming equipment, heavy-duty freight engines, and industrial work trucks. Fortunately for companies with large industrial fleets, fuel distributors are ready today to bring biodiesel or ethanol blends directly to industrial sites. 

Natural gas, or methane, the same fuel that cooks your food and heats your home, can be used in specialized “Near-Zero” engines that are made to burn it Natural gas is a clean burning fuel with much lower emissions than plain petroleum diesel.  It comes in two possible transportation fuel products: compressed natural gas (CNG) and liquid natural gas (LNG).  Both are available in renewable options.  More on that later. Natural gas is widely available through existing pipelines, and fuel costs are lower and more stable than diesel. It’s a great option for heavy vehicles such as freight trucks, transit buses, and refuse trucks. And, because the engines are quieter than diesel engines, that 6 am trash pickup won’t disturb your sleep.  CNG engines eliminate nearly all smog-forming pollutantshence the trade name “Near-Zero” engines While CNG is available to the general public at some area fueling stations and you can convert some cars and trucks to use CNGit usually only makes financial sense for high-mileage vehicles or fuel-hungry service providers to use it.  A number of our regional governments and service providers are already using CNG today. 

Making natural gas more climate-friendly is a priority for many people and government agencies.  The ultimate low-hanging fruit in reducing climate emissions is renewable natural gas (RNG) which involves collecting and then using methane, a greenhouse gas far more potent than carbon dioxide. Methane comes from sources other than just underground and a whopping 39% of natural gas vehicle fuel comes from renewable sources like landfill gas, which comes out of landfills whether it’s used or not.  Other sources of RNG include wastewater treatment plants, food waste and agricultural byproducts Available in both liquid and compressed forms, RNG is rapidly gaining market share because of its ecologically friendly procurement methods Done right, RNG can even have a negative carbon footprint! 

Which fuel heats your grill AND gets your kids to school?  Propane (also called autogas for transportation uses) It’s yet another cleaner burning, low-emission fuel with notably quieter operation than diesel fuel.  That makes for a much quieter ride, which drivers appreciate.  Because of that stealthy qualitypropane is a popular option for fleets of larger vehicles, especially school bus fleets.  Propane on aautogas transportation contract costs much less than diesel, so school districts can save substantially on fuel costs.  Switching to propane also means that students don’t have to breathe diesel exhaust while waiting for their busesPropane is widely available, with distribution networks already in place nationwide.  Like with CNG, you can convert some personal vehicles to run on propaneand though a bit harder to find than gasoline, it is available at some retail fuel stations. Not to be outdone by its gaseous counterpart RNG, renewable propane is an emerging product As icing on the cake, propane engine manufacturers are actively developing their own version of a “near-zero” engine, expected to be available in coming years. 

Though none of these options are ‘perfect’, they each offer substantial benefits compared to conventional fuelslower cost, longer engine life, quieter operationslower emissions, and economic benefits to the farm economy.  Though no single alternative fuel captures all these benefitsthere’s likely an option that’s almost perfect for your needs When more people, businesses and government fleets embrace alternative-fuel options, the owners/operators enjoy lower costs, softer road noise and less air pollution.  And with more investment in alternative fuels, research and development efforts continue to make every available option even better Big picture: petroleum diesel is far and away the worst culprit in making our air harder to breathe.  In order to cut down on the emissions released into the air by our transportation practices, it’s necessary for all of us to recognize and support any and all options. We can’t yet eliminate vehicle emissions, but moving in that direction ifar easier than you might think.  

For more information on alternative fuels and vehicles, check out the Alternative Fuels Data Center.

To the casual observer, battery-electric vehicles (BEVs) appear nestled comfortably on the upslope of a growth curve that would turn other industries green – with envy, in this case.  From a global grand total of about 20,000 EVs of all makes on the road in 2010, by 2019, the total number of plug-in hybrid (PHEV) and full electric autos on the road worldwide rose to 7.2 million.  That’s an almost a 360-fold increase in less than a decade.

The biggest surprise to date has been the number of surprises to date.  Who imagined that an automotive startup – the first such large-scale attempt since Kaiser-Frazier back in 1947 – would flat-out pound legacy OEMs in the US in any market segment?  In 2019, Tesla’s three all-electric models outsold GM’s EV/PHEV Bolt and Volt combined by nearly nine to one.  Also in 2019, the California upstart commanded more than 78% of US BEV market share.

Who imagined that battery costs would continue to collapse at the rate we’ve seen through 2019?  In 2010, battery costs per kwh averaged about $1,100 – in 2019, they hit a new low of $156.  Who imagined that price parity between EVs and conventional ICE models could arrive in some market segments by as soon as 2022, 2023, or 2025?  What year, of course, depends on whether the crystal ball you’re consulting belongs to Deloitte, Roskill or Carnegie Mellon University.

It’s this last bit – predicting the crossover– that we want to take a look at today.  Not surprisingly, it’s complicated.  Total cost of ownership for an EV can be substantially lower than for an ICE car.  With simple drive trains, EVs have fewer points of failure, and electricity is cheaper than gasoline in most industrialized nations.  Tax incentives and rebates can substantially sweeten the pot.  But in the words of a recent Automotive News article, mass EV adoption is “inevitable, yet elusive.”

Multiple factors are in play.  Infrastructure buildout is slower than it could be.  Manufacturers may increase their margins once EVs hit a tipping point, given the substantial sunk costs they’ve already incurred.  Moving the needle on consumer acceptance is still difficult.  Though we’re expecting the arrival of multiple EV models by multiple OEMs by 2023, 14 different brands didn’t offer a single EV option as recently as the end of 2018.  And there’s still a rough $6,000 – $9,000 gap between EV models and their ICE counterparts in non-luxury categories.  In the end, it may be mandates that do the heavy lifting.  For all of the reasons above, and given Americans’ aversion to mandates, IHS Markit projects 40% of EU cars will be hybrid or pure EV by 2031, compared with 20% of the American passenger fleet.

Above and beyond the usual suspects, there’s one you might not have suspected – reliability.  At least in the US, drivers are holding onto their cars longer than ever, thanks in part to better quality.  By this July, the average age of an American car was a record 11.9 years, and per IHS, one in four cars on the road in the United States are more than 16 years old.  This is something of a tribute to improved automotive quality:  as noted in the article linked above, “Back in the ’90s, one-quarter of cars parked at the grocery store were not Ford Mavericks and Chevy Vegas. Nowadays, that beige 2002 Corolla is still ubiquitous.”

With COVID driving economic worries for consumers, auto purchases may be viewed as more discretionary than ever, particularly when it comes to buying a new car.   At the same time, until the pandemic is under control, road trips (vs. flying) and commuting by car (not public transit) may keep long-term auto demand simmering, even as our wheels continue to gray.  How all of the preceding will drive EV acceptance in the next few years is hard to forecast, but we’ll be watching closely.

Since January, there’s been a lot of discussion, analysis and 151-proof worry about the COVID virus – understandably.  Viral impacts have produced (in less than six months) the biggest economic implosion since the 1930s, public health lockdowns spanning the planet, and a global death toll of (at this writing) 434,388, with nearly 116,000 of those confirmed deaths in the United States.

As you’d expect, there has also been a certain amount of silver-lining searching.  It’s only natural – as human beings, we look for the lesson, or what we could have done differently or what we might gain in times like these.  And with cars off the road and factories closing down, citizens of cities as remote from one another as Los Angeles, Beijing and New Delhi looked out the window and realized something truly strange was happening – the air was cleaner than it had been in years, even decades.  This four-minute clip from CBS has visuals that I won’t try to convey via keyboard.  For many, the spectacle of suddenly invisible (a.k.a. “normal”) air was startling.

With that kind of obvious impact, the next Big Question didn’t take long to surface:  if substantially shutting down Normal looks like this, what kind of impact is it having on the climate?  The early returns are in, and the answer is – not much.  NOAA reports globally averaged CO2 content of 417.07 ppm (parts per million) for May – up from 414.65 ppm in May 2019 and 411.24 ppm in May 2018.  There’s science behind this lack of change.  Earth, in effect, breathes – this was Charles Keeling’s great discovery in the late 1950s.  Atmospheric CO2 content rises and falls each year, bottoming out in October as most of Earth’s landmass hasn’t yet released carbon dioxide before the northern winter, and peaking in May before northern hemisphere forests have really begun to reabsorb it.  This means that COVID’s clean air aftereffects hit just as seasonal CO2 growth approached its peak.

Early estimates are that pandemic shutdowns led to an 8% drop in anthropogenic CO2 output, and that it would take 20-30% reductions for at least six months to put a dent in atmospheric readings.  As climatologist Katherine Hayhoe notes, imagine all the carbon we’ve put into the atmosphere as a pile of bricks.  We’ve been piling them up for about 250 years, more or less, and cutting a slice from latest brick dropped on top of the pile doesn’t make that much of a difference.  And we’re already seeing a rapid rebound in human CO2 output; “Things have happened very quickly”, in the words of one climatologist tracking current conditions as economic activity ramps back up again.

So if even something as disastrous as COVID can’t substantially alter the pace at which CO2 continues to pile up in the planet’s atmosphere, what will?  And if all the efforts made to clean up our energy act to date haven’t materially changed things, what can?  It would be easy to throw up our hands and assume that this spring’s lack of substantive results represents something permanent.

It doesn’t.

We are at an inflection point in how we produce and use energy and the pace of change is only accelerating.  Coal, the dirtiest source of electricity, is dying in multiple major economies.  June 10th marked 61 straight days that the United Kingdom didn’t generate one kilowatt from coal.  COVID has cut demand, so that and an unusually sunny May are part of the story, but the UK’s power grid has fundamentally changed.  A kilowatt of electricity cost as much as 600 grams of CO2 in 2012 – this spring, as little as 125.  And this took place even as the country’s population grew from 64.5 million in 2012 to 68.9 million this year.  In the US, electric output from all renewables surpassed electricity from coal for the first time since the 1880s, and coal has essentially collapsed as a utility fuel – from a peak in 2008 at around 23 quads (Quadrillion BTUs), it’s now producing around 12 quads, as the graph at the link above powerfully illustrates.

And it isn’t just a question of generating electricity.  Large-scale battery storage, a long-time dream of clean power advocates, is expanding rapidly.  15 small-scale 9.95 MWh systems will support peak generation while smoothing out price spikes in Texas, and the state symbolized by the oil rig is already the nation’s leading wind generator.  In California, PG&E is negotiating 1.7 GWh of storage with the state – more than ten times the power of the Texas sites mentioned above.  Perhaps the single most striking change is the cost of solar energy;  between 1980 and 2012, the cost of solar modules fell by a stunning 97%, and those costs keep dropping, just as solar cell efficiencies climb to as high as 47% in some experimental designs.  Underpinning all of this is a simple, unignorable fact – renewables are now less expensive than fossil energy sources.  Markets are responding – unevenly in some locations, swiftly in others but responding all the same.

The task that remains is immense.  There is considerable doubt whether the goal of limiting further warming to 1.5 degrees C to avoid the worst of potential climate damage can be reached.  There isn’t all that much time left.  Lofty pledges of zero-emission goals by companies and countries by 2050 are fine, but we’ve already used up 1.5% of the time remaining between 2020 and 2050 to achieve those goals.  And yet, for the first time, there now appear to be enough tools on the bench – technological and economic – to let us get started on meaningful work.

So, when we talk about someone employed in “clean energy”, what does that cover?  Like “manufacturing”, many things. The Bureau of Labor Statistics (BLS) defines and tracks employment by sector, but it’s not the most user-friendly resource.  So, while BLS notes that there were nearly 6,000 wind turbine service techs employed in May of 2020, it divides them among five different industries, ranging from utility construction to consulting to local government.  Sadly, a BLS plan to categorize and track clean energy jobs begun in 2010 was abandoned in 2013 during a federal budget shutdown, and has never resumed.

More generally, clean energy jobs fall into four broad categories – energy efficiency (home upgrades or commercial building retrofits); renewables (solar, wind, biogas, or geothermal energy); grid and storage (electrical engineering, battery tech, and charging stations); and cleaner vehicles and fuels (hybrid and electric vehicle manufacturing or biofuel production).  Altogether, more than 3.3 million Americans work in one of these fields, and it’s worth noting that energy efficiency alone employed more than twice as many people as all fossil energy sectors combined.

Like nearly everybody else, clean energy workers have taken a hit in this economy.  About 147,000 jobs were eliminated in March, and April totals nearly tripled that.  More than 590,000 jobs in the sector evaporated by April 30th, two months ahead of projections by BW Research.  The same analysts now expect around ¼ of all green energy jobs to be gone by June 30th, some 850,000 in all.

Under the circumstances, this isn’t surprising.  Homeowners are unlikely to invite insulation crews into their homes in the midst of a pandemic.  Financial chaos means that banks are less likely to lend on large-scale clean energy deployments.  Cities facing budgets collapsing under tax shortfalls are going to emphasize essential services before clean energy buildouts.  And utilities are facing tumbling energy demand.  IEA estimates that from February through April, global demand for energy dropped 6%, the equivalent of all of India.  American energy demand is set to drop 9%, according to the same report.

Whatever the course of economic contraction and recovery, there are certain irreducible advantages to jobs in these industries.  To begin with, they tend to be site-specific.  Many renewable energy jobs are unlikely to be outsourced – those building and maintaining a thermal solar plant in Arizona, for example, are going to build and maintain it in that location for its useful life.  The same holds true for energy efficiency professionals – the homes and buildings in the United States aren’t going to offshore themselves.

Many skilled green energy jobs pay relatively well, can boost stressed economies and don’t require four-year degrees.  Wind turbine techs, for example, exemplify this beneficial clustering.  Wind turbines require regular service and maintenance, and wind farms are located largely in rural areas in the Midwest and southern Plains.  Technicians tend to live in smaller cities or towns near these sites, supporting the local tax base.  Median income for a turbine technician in 2019 was $52,910, which could go a long way in Russell County, Kansas or Alliance, Nebraska.  And training for the field takes one or two years, depending on program and specialization. Median income for solar installers was lower, but in 2019 stood at $44,890 per year, and for insulation crews, median income in 2019 was $44,180,

The issue, at least for now, is that the three specific categories mentioned above don’t employ very many Americans – about 75,000 in all in 2018 and 2019, according to BLS.  But broaden the focus, and green energy’s economic becomes clearer – and bigger.  Wind energy’s total economic footprint alone is already substantial.  In 2018, 530 plants in 43 states produced components – blades, nacelles, turbines, gearing and digital control systems. Outsourcing of some of this manufacturing is possible, but given the size and weight of components as turbines grow taller, is likely to remain largely here at home.  Moreover, the Department of Energy estimates as many as 600,000 jobs in all subsectors of wind energy in less than 30 years.

This kind of job generation potential is what makes remaking America’s energy system so important to inclusive economic recovery.  Utilities, states and cities are already beginning to implement plans to change how we generate and distribute energy in a carbon-constrained world.  These efforts have been patchy and slow, and to date unlikely to meet even minimal Paris Agreement standards.  But under the right circumstances, policy changes, like technological changes, can happen quickly.  Emphasizing the very real benefits of more clean energy jobs may help speed that vital process.

Carnage in the conventional energy sector has drawn a lot of attention in the past few weeks.  But the collapse of recent months was presaged by mediocre performance stretching back literally years.  Total returns for the Standard & Poor Energy Sector for 2019, including dividends, were a paltry 6%.  And for the entire decade of 2010-2019, the same sector was up 34%, by far the worst performance of the 11 sectors S&P tracks.  The fracking revolution, it turns out, created a world awash in oil and gas, but didn’t do much to help the industry that created it.

Which brings us to a related question – if oil & gas are in trouble from COVID-19 and from a decade of overproduction and low prices, what has the ongoing turmoil done to alternative fuels?  In particular, since KC Clean Cities operates in the biofueled, beating heart of the Midwest, what’s happened to biodiesel and (particularly) ethanol?

A bit of backstory:   more than 95% of vehicle gasoline sold in the US is a 10% ethanol blend.  There are several reasons for this.  Until about 15 years ago, a compound known as MTBE (methyl tertiary-butyl ether) was blended with gasoline to add oxygen.  As a result, gasoline burned cleaner, and cut smog-forming chemicals and toxins like benzene in exhaust.  But there were problems – MTBE leaked into groundwater from gas station tanks, creating water quality problems.  Moreover, it’s listed as a potential carcinogen.  Enter ethanol, exit MTBE with the Energy Policy Act of 2005.

Like MTBE, ethanol adds oxygen to gasoline and cuts smog-forming emissions.  Unlike MTBE, it’s also a way for America to deal with its massive agricultural surpluses by distilling a value-added product from corn. (It’s worth noting that ethanol now accounts for 40% of all the corn we grow.)

With the Energy Independence & Security Act of 2007, Congress created a mandate that steadily increasing amounts of renewables would be blended into America’s fuel supply – 36 billion gallons by 2022.  This is the Renewable Fuels Standard, which has been hotly debated over the last few years in Washington and elsewhere.

So far so good.  Refineries and fuel importers had a choice – they could blend steadily increasing amounts of renewable fuels.  Or, if they didn’t want to, they could use RINs – Renewable Inventory Numbers – attached to each gallon of renewable fuel produced.  Pecos Pete’s refinery has already hit their required volume of ethanol blended with gasoline for the year, but they keep on blending.  Why?  Because Brownsville Bob’s refinery hasn’t blended any ethanol into their gasoline.  However, Bob can stay in compliance by buying RINs from Pecos Pete, with the price set by the RIN market.

There’s also been a safety valve built into the system, called the Small Refinery Exemption or SRE.  “Small” is relative, but refineries with less than 75,000 barrels per day as of 2006 qualify, and can petition EPA to be excused from renewable fuel blending.  And this is where the fur begins to fly.  Between 2016 and 2018, the EPA granted a total of 85 small refinery exemptions, a big jump that removed a total of 4 billion gallons of mandated demand from the market.  This has been a sore spot with farmers, but hardly the only one.  The ongoing trade war with China has dried up what was a major market for ethanol, corn and distiller’s grain, a byproduct of the ethanol production process used as animal feed.  Allowing year-round sales of E-15 – that is, gasoline that is 15% ethanol by volume hasn’t made much of a dent, since relatively few gas stations sell it even though all light-duty gasoline vehicles 2001 or newer are approved to use E15.

And now, COVID.  Just as Texas and Oklahoma oil producers and refineries don’t have any place left to store their crude and refined products as consumer demand collapses, ethanol producers are running out of storage.  Federal Reserve research shows US ethanol production down nearly 50% since the beginning of 2020.  73 out of 200 total plants nationwide are shut down, while another 71 are on reduced production schedules.  At least two dozen ethanol plants are now producing alcohol for hand sanitizer, but at low volume, much of which will be donated anyway.

For the time being, the sector seems to be shaking its way into stasis.  Whatever shape the ethanol industry takes in 2021 and beyond will depend for now on what the virus does– and how we respond – in 2020.

For additional details on why this matters, please check out our guest blog posting by David VanderGriend of the Urban Air Institute.  Fuel blending standards can sound arcane, and the details of ethanol and corn and agriculture seem like something taking place in distant, rural counties.  They’re not.  They impact the lives of residents of metro Kansas City every day, and at the fundamental level of our own health.

Section 127(s) of Title 23 of the United States Code, as amended by the Consolidated Appropriations Act of 2019 (PL 116-6), increases the weight limit for natural gas vehicles operating on the interstate Highway System by an extra 2,000 lbs. This increases the limit from 80,000 lbs to 82,000 lbs.

Federal Highway Administration issued a departmental memorandum providing further guidance for this weight allowance.

FHWA Guidance includes the following:

  1. State authorities must allow the additional weight on the Interstate Highway System.
  2. State authorities must provide reasonable access to the Interstate.
  3. Weight allowance applies beyond the Gross Vehicle Weight (extends to single axel, tandem axel and bridge weight formulas limits).
  4. Weight allowance must be taken in addition to other weight allowances.

Follow this link below to access the full PDF provided by NVGAmerica. https://www.ngvamerica.org/wp-content/uploads/2020/01/NGV-Weight-Allowance-Guidance.pdf

Events

A key part of reducing emissions is by cleaning up the transportation sector. In this webinar, learn about how you can reduce your current vehicle’s emissions–no matter where you live–while saving money at the tank. Our panel discusses the value of low- and mid-blend ethanol and its benefits for your vehicle, its emissions, and your fuel costs. Join Urban Air Initiative’s Kim Trinchet and Jump Start’s Phil Near as they educate our audience on low- and mid-blend ethanol grades like E10, E15, E20, and E30. Explore why ethanol is great for your car, the environment and your wallet. We know that we need to do our part by reducing fossil fuel use and improving air quality. We can start right now!

Join us on Wednesday, January 27th at 10 am CST to discuss the benefits of low- and mid-blend ethanol. If you aren’t able to join us, register below to receive the recording after the event.

Our Speakers

Phil Near, Three G Energy and Jump Start Stores Inc. – Near formed Three G in 2010, bringing more than 30 years of petroleum industry leadership, convenience store expertise, and executive management experience to the company. Near has both led and served a number of organizations to include: President of Crescent Oil, Kansas Petroleum Marketers Association President, Kansas Petroleum Markers Association Board of Directors, Kansas Highway Advisory Commission, Conoco National Jobber Advisory Board, Phillips National Jobber Advisory Board, Commerce Bank Board, Leadership Kansas Class, Kansas Chamber of Commerce and Industry Board of Directors.

Currently serving as president of both Three G Energy and of Jump Start Stores Inc., Near’s focus remains on utilizing cutting edge technology. Providing customers cost-efficient and quality fueling options across the marketplace.

Kim Trinchet is the Communications Manager at Urban Air Initiative (UAI), a non-profit organization dedicated to improving air quality and protecting public health by reducing vehicle emissions through increased use of biofuels. Kim spends much of her time educating industry stakeholders and the public about the emissions, cost and engine benefits of biofuels.  

Prior to joining UAI in 2014, Kim spent 11 years in local news as a reporter and digital content manager. She remains involved in the local community as a member of the Junior League of Wichita and a contributor for Wichita Mom. Kim has a bachelor’s degree in Mass Communications from Illinois State University.

 

Tami Alexander joined Metropolitan Energy Center in August 2017 to support the ethanol and biodiesel projects in Kansas. She is the Program Coordinator for the Central Kansas Clean Cities Coalition, managing event coordination, outreach, customer relationship management, program support, research writing, and content development.

In addition to her work at MEC, Tami has several years of facility and non-profit management experience where she introduced sustainability measures to organization practices. She has Bachelor‘s degrees in Mathematics-Statistics and Geology and a Master’s in Environmental Science all from Wichita State University.