Posts

At MEC, our job is to keep tabs on energy use in the central Midwest, but why should that matter? Because the ways that people and businesses use energy can affect lives. Technology has yet to come up with a solution that moves people and goods without releasing some sort of air pollution, and air pollution affects human health.  The problem is that every power source that can power a vehicle will create emissions and will have a carbon footprinteven electric vehicles.  There are, however, many alternative fuel options that arefar cleaner than gasoline and diesel.  If you’re looking for a vehicle that produces less emissions, there are a lot of factors to consider when making your decision. 

Let’s compare the different ways that the energy we use affects our health. In 2017 the emissions from vehicles on the road passed up the amount of emissions released from power stations.  That switch has shown up as health problems, such as the increase of child asthma cases for families living near highways and railroads.That’s simply because vehicle emissions get concentrated in the air around the places that people and goods get transported. Transportation emissions are now the #1 source of greenhouse gases too, making it globally important to choose our transportation wisely.  For the sake of our local and global health, we must decide to make transportation cleaner. The question now is how. 

For some, their ideal chosen solution is to walk or bike more places, and to only shop for things in stores within walking distance of their house.  But what if you need transportation?  Remember that COVID shutdowns produced sudden, startling air quality improvements the likes of which we haven’t seen in decades.  As residents of Los Angeles and New York saw with their own eyes, less vehicles on the road immediately improved their air quality, even in heavily polluted cities.  But the shutdown of society isn’t a realistic model for fighting climate change in the long run.  Movement of people and goods still must happen.  Are there cleaner solutions than what’s commonly used to move people and goods right now? The simple answer is yes.  For a more complete answer, here are options that make sense for our health, the economy and the environment. 

Electric vehicles (EVs), which plug in to an electrical supply to “fuel up, are creating a lot of buzz right now, and rightly so. All-electric vehicles have zero emissions coming out of their tailpipesso they appear to be the magic bullet for clean air around our roadways.  Plug-in hybrids are also great, in that they make use of electricity as a primary fuel, but are equipped with a fuel tank as a backup for longer trips.  EVs are great as urban or suburban family cars, transit buses, or local delivery trucks that rack up limited daily miles before returning to base to recharge.  Plus, long-range batteries, fast charging stations, and new heavy truck technologies are under rapid development, so the list of compatible uses is getting longer by the day.  

You may not realize that you can help your electrical grid become more efficient with the electricity being generated just by owning an EV and charging it at night.  The electrical grid is set up to estimate how much power is needed, and then generate slightly more than that amount to provide for our electricity needs.  Whatever electricity is generated at power plants either gets used, or it dissipates with non-use.  If you charge an EV overnight, it utilizes that energy that would otherwise be wasted. 

Biofuels are another cleaner transportation option available now.  They come from farm-produced food commodity byproductsthey emit substantially less air pollution when burnedand they’re surprisingly less expensive than the worst emission producers, gasoline and diesel.  Ethanol and biodiesel have been around for a while, and just like your cell phone, their design and our use of them has greatly improved over the last 20 years. 

In the 1990s, car manufacturers started figuring out how to protect the insides of vehicle fuel lines from the extra corrosiveness of ethanol blends, which is basically ethyl alcohol (moonshine!) mixed with gasoline.  By 2012, ethanol had busted into the mainstream, and most vehicle manufacturers now support up to 15% ethanol (E15).  To save money and get a cleaner burn in your vehicle, look for the E15 label on pumps at gas stations.  The added ethanol increases the octane, which is actually better for modern, more fuel-efficient engines.  Plus, the more ethanol mixed into gasoline, the fewer harmful, carcinogenic gases get released into the air around it All of this is why today most gasoline at the pump already has 10% ethanol in it.  You can choose higher blends if your vehicle is rated to use them.  Then it’s a matter of finding a local gas station where that blend is available to support your choice.  When you’re buying a family vehicle and want the option of using high blends of ethanol (E20-E85)ask to look at flex-fuel” options at your dealership Typically, a flex-fuel vehicle will have a yellow gas cap, indicating that you can safely use blends up to 85% ethanol, wherever you should find them. 

Biodiesel is another clean fuel option. It can be used in most diesel-fueled vehicles, and also supports the regional economy as a value-added farm product. It is a renewable fuel made from vegetable oils, primarily soybean and sometimes corn oil, but also from recycled cooking oil and waste fat. No, you can’t just pour the grease from your deep-fried turkey into your pickup. Just like petroleum, it has to be refined first, and biodiesel at the pump has excellent quality controlsMost diesel engines can use blends of biodiesel and petroleum diesel up to 20% (called “B20), which can be found at some area fuel stations. It’s also an easy drop-in fuel option for farming equipment, heavy-duty freight engines, and industrial work trucks. Fortunately for companies with large industrial fleets, fuel distributors are ready today to bring biodiesel or ethanol blends directly to industrial sites. 

Natural gas, or methane, the same fuel that cooks your food and heats your home, can be used in specialized “Near-Zero” engines that are made to burn it Natural gas is a clean burning fuel with much lower emissions than plain petroleum diesel.  It comes in two possible transportation fuel products: compressed natural gas (CNG) and liquid natural gas (LNG).  Both are available in renewable options.  More on that later. Natural gas is widely available through existing pipelines, and fuel costs are lower and more stable than diesel. It’s a great option for heavy vehicles such as freight trucks, transit buses, and refuse trucks. And, because the engines are quieter than diesel engines, that 6 am trash pickup won’t disturb your sleep.  CNG engines eliminate nearly all smog-forming pollutantshence the trade name “Near-Zero” engines While CNG is available to the general public at some area fueling stations and you can convert some cars and trucks to use CNGit usually only makes financial sense for high-mileage vehicles or fuel-hungry service providers to use it.  A number of our regional governments and service providers are already using CNG today. 

Making natural gas more climate-friendly is a priority for many people and government agencies.  The ultimate low-hanging fruit in reducing climate emissions is renewable natural gas (RNG) which involves collecting and then using methane, a greenhouse gas far more potent than carbon dioxide. Methane comes from sources other than just underground and a whopping 39% of natural gas vehicle fuel comes from renewable sources like landfill gas, which comes out of landfills whether it’s used or not.  Other sources of RNG include wastewater treatment plants, food waste and agricultural byproducts Available in both liquid and compressed forms, RNG is rapidly gaining market share because of its ecologically friendly procurement methods Done right, RNG can even have a negative carbon footprint! 

Which fuel heats your grill AND gets your kids to school?  Propane (also called autogas for transportation uses) It’s yet another cleaner burning, low-emission fuel with notably quieter operation than diesel fuel.  That makes for a much quieter ride, which drivers appreciate.  Because of that stealthy qualitypropane is a popular option for fleets of larger vehicles, especially school bus fleets.  Propane on aautogas transportation contract costs much less than diesel, so school districts can save substantially on fuel costs.  Switching to propane also means that students don’t have to breathe diesel exhaust while waiting for their busesPropane is widely available, with distribution networks already in place nationwide.  Like with CNG, you can convert some personal vehicles to run on propaneand though a bit harder to find than gasoline, it is available at some retail fuel stations. Not to be outdone by its gaseous counterpart RNG, renewable propane is an emerging product As icing on the cake, propane engine manufacturers are actively developing their own version of a “near-zero” engine, expected to be available in coming years. 

Though none of these options are ‘perfect’, they each offer substantial benefits compared to conventional fuelslower cost, longer engine life, quieter operationslower emissions, and economic benefits to the farm economy.  Though no single alternative fuel captures all these benefitsthere’s likely an option that’s almost perfect for your needs When more people, businesses and government fleets embrace alternative-fuel options, the owners/operators enjoy lower costs, softer road noise and less air pollution.  And with more investment in alternative fuels, research and development efforts continue to make every available option even better Big picture: petroleum diesel is far and away the worst culprit in making our air harder to breathe.  In order to cut down on the emissions released into the air by our transportation practices, it’s necessary for all of us to recognize and support any and all options. We can’t yet eliminate vehicle emissions, but moving in that direction ifar easier than you might think.  

For more information on alternative fuels and vehicles, check out the Alternative Fuels Data Center.

To the casual observer, battery-electric vehicles (BEVs) appear nestled comfortably on the upslope of a growth curve that would turn other industries green – with envy, in this case.  From a global grand total of about 20,000 EVs of all makes on the road in 2010, by 2019, the total number of plug-in hybrid (PHEV) and full electric autos on the road worldwide rose to 7.2 million.  That’s an almost a 360-fold increase in less than a decade.

The biggest surprise to date has been the number of surprises to date.  Who imagined that an automotive startup – the first such large-scale attempt since Kaiser-Frazier back in 1947 – would flat-out pound legacy OEMs in the US in any market segment?  In 2019, Tesla’s three all-electric models outsold GM’s EV/PHEV Bolt and Volt combined by nearly nine to one.  Also in 2019, the California upstart commanded more than 78% of US BEV market share.

Who imagined that battery costs would continue to collapse at the rate we’ve seen through 2019?  In 2010, battery costs per kwh averaged about $1,100 – in 2019, they hit a new low of $156.  Who imagined that price parity between EVs and conventional ICE models could arrive in some market segments by as soon as 2022, 2023, or 2025?  What year, of course, depends on whether the crystal ball you’re consulting belongs to Deloitte, Roskill or Carnegie Mellon University.

It’s this last bit – predicting the crossover– that we want to take a look at today.  Not surprisingly, it’s complicated.  Total cost of ownership for an EV can be substantially lower than for an ICE car.  With simple drive trains, EVs have fewer points of failure, and electricity is cheaper than gasoline in most industrialized nations.  Tax incentives and rebates can substantially sweeten the pot.  But in the words of a recent Automotive News article, mass EV adoption is “inevitable, yet elusive.”

Multiple factors are in play.  Infrastructure buildout is slower than it could be.  Manufacturers may increase their margins once EVs hit a tipping point, given the substantial sunk costs they’ve already incurred.  Moving the needle on consumer acceptance is still difficult.  Though we’re expecting the arrival of multiple EV models by multiple OEMs by 2023, 14 different brands didn’t offer a single EV option as recently as the end of 2018.  And there’s still a rough $6,000 – $9,000 gap between EV models and their ICE counterparts in non-luxury categories.  In the end, it may be mandates that do the heavy lifting.  For all of the reasons above, and given Americans’ aversion to mandates, IHS Markit projects 40% of EU cars will be hybrid or pure EV by 2031, compared with 20% of the American passenger fleet.

Above and beyond the usual suspects, there’s one you might not have suspected – reliability.  At least in the US, drivers are holding onto their cars longer than ever, thanks in part to better quality.  By this July, the average age of an American car was a record 11.9 years, and per IHS, one in four cars on the road in the United States are more than 16 years old.  This is something of a tribute to improved automotive quality:  as noted in the article linked above, “Back in the ’90s, one-quarter of cars parked at the grocery store were not Ford Mavericks and Chevy Vegas. Nowadays, that beige 2002 Corolla is still ubiquitous.”

With COVID driving economic worries for consumers, auto purchases may be viewed as more discretionary than ever, particularly when it comes to buying a new car.   At the same time, until the pandemic is under control, road trips (vs. flying) and commuting by car (not public transit) may keep long-term auto demand simmering, even as our wheels continue to gray.  How all of the preceding will drive EV acceptance in the next few years is hard to forecast, but we’ll be watching closely.

So, when we talk about someone employed in “clean energy”, what does that cover?  Like “manufacturing”, many things. The Bureau of Labor Statistics (BLS) defines and tracks employment by sector, but it’s not the most user-friendly resource.  So, while BLS notes that there were nearly 6,000 wind turbine service techs employed in May of 2020, it divides them among five different industries, ranging from utility construction to consulting to local government.  Sadly, a BLS plan to categorize and track clean energy jobs begun in 2010 was abandoned in 2013 during a federal budget shutdown, and has never resumed.

More generally, clean energy jobs fall into four broad categories – energy efficiency (home upgrades or commercial building retrofits); renewables (solar, wind, biogas, or geothermal energy); grid and storage (electrical engineering, battery tech, and charging stations); and cleaner vehicles and fuels (hybrid and electric vehicle manufacturing or biofuel production).  Altogether, more than 3.3 million Americans work in one of these fields, and it’s worth noting that energy efficiency alone employed more than twice as many people as all fossil energy sectors combined.

Like nearly everybody else, clean energy workers have taken a hit in this economy.  About 147,000 jobs were eliminated in March, and April totals nearly tripled that.  More than 590,000 jobs in the sector evaporated by April 30th, two months ahead of projections by BW Research.  The same analysts now expect around ¼ of all green energy jobs to be gone by June 30th, some 850,000 in all.

Under the circumstances, this isn’t surprising.  Homeowners are unlikely to invite insulation crews into their homes in the midst of a pandemic.  Financial chaos means that banks are less likely to lend on large-scale clean energy deployments.  Cities facing budgets collapsing under tax shortfalls are going to emphasize essential services before clean energy buildouts.  And utilities are facing tumbling energy demand.  IEA estimates that from February through April, global demand for energy dropped 6%, the equivalent of all of India.  American energy demand is set to drop 9%, according to the same report.

Whatever the course of economic contraction and recovery, there are certain irreducible advantages to jobs in these industries.  To begin with, they tend to be site-specific.  Many renewable energy jobs are unlikely to be outsourced – those building and maintaining a thermal solar plant in Arizona, for example, are going to build and maintain it in that location for its useful life.  The same holds true for energy efficiency professionals – the homes and buildings in the United States aren’t going to offshore themselves.

Many skilled green energy jobs pay relatively well, can boost stressed economies and don’t require four-year degrees.  Wind turbine techs, for example, exemplify this beneficial clustering.  Wind turbines require regular service and maintenance, and wind farms are located largely in rural areas in the Midwest and southern Plains.  Technicians tend to live in smaller cities or towns near these sites, supporting the local tax base.  Median income for a turbine technician in 2019 was $52,910, which could go a long way in Russell County, Kansas or Alliance, Nebraska.  And training for the field takes one or two years, depending on program and specialization. Median income for solar installers was lower, but in 2019 stood at $44,890 per year, and for insulation crews, median income in 2019 was $44,180,

The issue, at least for now, is that the three specific categories mentioned above don’t employ very many Americans – about 75,000 in all in 2018 and 2019, according to BLS.  But broaden the focus, and green energy’s economic becomes clearer – and bigger.  Wind energy’s total economic footprint alone is already substantial.  In 2018, 530 plants in 43 states produced components – blades, nacelles, turbines, gearing and digital control systems. Outsourcing of some of this manufacturing is possible, but given the size and weight of components as turbines grow taller, is likely to remain largely here at home.  Moreover, the Department of Energy estimates as many as 600,000 jobs in all subsectors of wind energy in less than 30 years.

This kind of job generation potential is what makes remaking America’s energy system so important to inclusive economic recovery.  Utilities, states and cities are already beginning to implement plans to change how we generate and distribute energy in a carbon-constrained world.  These efforts have been patchy and slow, and to date unlikely to meet even minimal Paris Agreement standards.  But under the right circumstances, policy changes, like technological changes, can happen quickly.  Emphasizing the very real benefits of more clean energy jobs may help speed that vital process.

So where, as COVID redefines economies and politics, is the renewable energy sector?  What happens over the next few years – to technologies, investments, deployments and incentives – will determine multiple trajectories.  These include the jobs of millions of people, how quickly carbon accumulates in the atmosphere and oceans, and the possibility of stranded assets hampering any rapid, substantive switch from old to new.

If you’re thinking purely in terms of dollars and cents, the latest issue of Forbes has a fascinating article.  A joint study by the International Energy Agency (IEA) and Imperial College London reviewed returns on energy investments starting in 2009.  Combining German and French stock market data, the past five years showed returns of 178% for renewables and -20.7% for fossil energy.  UK renewable stocks returned over 75%, legacy energy 8.8%.  Here at home, where utility-scale renewable buildouts began later than in Europe, renewable returns were north of 200%, while oil, gas and coal stocks didn’t quite double.  Renewable investments proved more stable over the same periods measured.  But the same article notes that the biggest fossil energy shareholders – pension funds – are reluctant to disinvest from dividend-rich stocks.

Beyond that, an ostensible renewable energy transition is up against multiple countervailing factors – for starters $900 billion or more in potential “stranded assets” of global fossil energy companies.  The oil majors have talked a good game for years now, but the numbers don’t bear out their proclaimed commitments to renewables.  Exxon is now in court for, among other things, bragging on its green energy tech while spending less than ½ of 1% of revenues on renewable energy.  In 2019, BP projected spending between 3% and 8% (at best) of capex on renewables, and in February the company dumped an advertising campaign highlighting renewables.  And so on.

American utilities face the same kinds of stranded asset risks, though only 18% of utility employees view sunk costs in infrastructure as a top worry.  But power plants can be ferociously expensive to build.  Evergy’s Iatan 2 project, which went online nearly 10 years ago, came in at nearly $2 billion, with state-of-the-art environmental retrofits of the Iatan 1 plant adding to costs.  It can take large projects like this decades to pay for themselves; securitizing early retirement of fossil fuel plants can blunt risks to utilities, but so far has only been tried in three states.

Even bigger picture – there’s a substantial inertia built into an energy economy created more than 100 years ago – a vast, complex system that works remarkably well to meet the needs of its customers.  To date, renewables are still a small slice of total US electricity output.  In 2018, natural gas generated about 35% of our electricity, coal about 27%, nuclear a bit over 19% and all renewables, including hydroelectric, not quite 17%, with niche sources making up the rest.

To be clear, renewable energy’s recent eclipse of coal in the US has been remarkable.  In fact, the US Energy Information Administration (EIA) announced the very day this was written that in 2019 consumption of energy produced from renewables passed that produced by coal, the first time per EIA that this has happened since before 1885.  But a decarbonized energy economy is still decades away.  The International Renewable Energy Agency (IRENA) estimates that to even approach climate goals, renewables must increase to around 65% of global Total Primary Energy Supply by 2050 – and we’re nowhere close to that yet.  More on all of the above, COVID impacts and the state of play in our next renewable installment.

Carnage in the conventional energy sector has drawn a lot of attention in the past few weeks.  But the collapse of recent months was presaged by mediocre performance stretching back literally years.  Total returns for the Standard & Poor Energy Sector for 2019, including dividends, were a paltry 6%.  And for the entire decade of 2010-2019, the same sector was up 34%, by far the worst performance of the 11 sectors S&P tracks.  The fracking revolution, it turns out, created a world awash in oil and gas, but didn’t do much to help the industry that created it.

Which brings us to a related question – if oil & gas are in trouble from COVID-19 and from a decade of overproduction and low prices, what has the ongoing turmoil done to alternative fuels?  In particular, since KC Clean Cities operates in the biofueled, beating heart of the Midwest, what’s happened to biodiesel and (particularly) ethanol?

A bit of backstory:   more than 95% of vehicle gasoline sold in the US is a 10% ethanol blend.  There are several reasons for this.  Until about 15 years ago, a compound known as MTBE (methyl tertiary-butyl ether) was blended with gasoline to add oxygen.  As a result, gasoline burned cleaner, and cut smog-forming chemicals and toxins like benzene in exhaust.  But there were problems – MTBE leaked into groundwater from gas station tanks, creating water quality problems.  Moreover, it’s listed as a potential carcinogen.  Enter ethanol, exit MTBE with the Energy Policy Act of 2005.

Like MTBE, ethanol adds oxygen to gasoline and cuts smog-forming emissions.  Unlike MTBE, it’s also a way for America to deal with its massive agricultural surpluses by distilling a value-added product from corn. (It’s worth noting that ethanol now accounts for 40% of all the corn we grow.)

With the Energy Independence & Security Act of 2007, Congress created a mandate that steadily increasing amounts of renewables would be blended into America’s fuel supply – 36 billion gallons by 2022.  This is the Renewable Fuels Standard, which has been hotly debated over the last few years in Washington and elsewhere.

So far so good.  Refineries and fuel importers had a choice – they could blend steadily increasing amounts of renewable fuels.  Or, if they didn’t want to, they could use RINs – Renewable Inventory Numbers – attached to each gallon of renewable fuel produced.  Pecos Pete’s refinery has already hit their required volume of ethanol blended with gasoline for the year, but they keep on blending.  Why?  Because Brownsville Bob’s refinery hasn’t blended any ethanol into their gasoline.  However, Bob can stay in compliance by buying RINs from Pecos Pete, with the price set by the RIN market.

There’s also been a safety valve built into the system, called the Small Refinery Exemption or SRE.  “Small” is relative, but refineries with less than 75,000 barrels per day as of 2006 qualify, and can petition EPA to be excused from renewable fuel blending.  And this is where the fur begins to fly.  Between 2016 and 2018, the EPA granted a total of 85 small refinery exemptions, a big jump that removed a total of 4 billion gallons of mandated demand from the market.  This has been a sore spot with farmers, but hardly the only one.  The ongoing trade war with China has dried up what was a major market for ethanol, corn and distiller’s grain, a byproduct of the ethanol production process used as animal feed.  Allowing year-round sales of E-15 – that is, gasoline that is 15% ethanol by volume hasn’t made much of a dent, since relatively few gas stations sell it even though all light-duty gasoline vehicles 2001 or newer are approved to use E15.

And now, COVID.  Just as Texas and Oklahoma oil producers and refineries don’t have any place left to store their crude and refined products as consumer demand collapses, ethanol producers are running out of storage.  Federal Reserve research shows US ethanol production down nearly 50% since the beginning of 2020.  73 out of 200 total plants nationwide are shut down, while another 71 are on reduced production schedules.  At least two dozen ethanol plants are now producing alcohol for hand sanitizer, but at low volume, much of which will be donated anyway.

For the time being, the sector seems to be shaking its way into stasis.  Whatever shape the ethanol industry takes in 2021 and beyond will depend for now on what the virus does– and how we respond – in 2020.

For additional details on why this matters, please check out our guest blog posting by David VanderGriend of the Urban Air Institute.  Fuel blending standards can sound arcane, and the details of ethanol and corn and agriculture seem like something taking place in distant, rural counties.  They’re not.  They impact the lives of residents of metro Kansas City every day, and at the fundamental level of our own health.

District: Grain Valley School District
Industry: Education
Location: Grain Valley, Missouri
Vehicles: (14) 2018 IC Bus CE Series propane autogas-fueled buses
Fueling: On-site propane autogas station

Challenge
With aging diesel buses to replace, a Missouri school district looked to alternative fuel options that would save money on fuel and maintenance.

Result
The Grain Valley School District purchased 14 propane school buses. The new buses joined a 49-bus fleet that transports 2,800 students to school from suburban and exurban neighborhoods.

Focus on Cost-Cutting
Over the years Missouri state reimbursements for school transportation have dropped from 75 percent to 16 to 20 percent. School districts in the state have had to tap their own general school funds to make up the shortfall.

To help save money, the Grain Valley district considered alternative fuels for its new school buses and comparing compressed natural gas (CNG) and propane autogas. District representatives attended an alternative fuels workshop hosted by Kansas City Regional Clean Cities, a Metropolitan Energy Center program. The district considered various fuels but “the vehicle costs and fueling station costs for CNG were much higher versus propane,” said Shawn Brady, director of transportation.

The district decided to purchase 14 propane buses in 2018 to replace diesel buses of 2001 and 2002 model years. Brady researched and applied for a grant from the U.S. Department of Energy through Kansas City Regional Clean Cities to assist with the purchase costs of the buses.

Preparing for Propane Autogas
To fuel the new buses, the district entered into a contract with their local propane provider, Ferrellgas. A fueling station with two 1,000-gallon tanks was built in the school district’s bus parking lot in April 2018. “It saves time not to have to travel to refuel,” Brady noted.

Infrastructure costs for propane are the lowest of any fuel; alternative or conventional. For Grain Valley schools, the start-up cost for the fueling station totaled $16,500. “We received a 45 percent grant from Metropolitan Energy Center for the installation of our propane fueling station,” Brady said. The center’s grant amounted to $7,425. “The fueling station cost us only $9,075 after the grant.”

Before putting the new buses on the district’s routes, drivers received training in propane bus operation. “Our bus vendor provided training on how to properly operate the buses and maximize fuel efficiency,” Brady said. The district’s technicians traveled to the bus manufacturer’s factory in Tulsa, Oklahoma, for a complimentary week-long training course on maintenance. The district didn’t need to make changes to its bus repair facility. Requirements for a propane vehicle service facility are generally the same as those for conventionally fueled vehicles.

Financial Benefits
After tapping grants for purchase assistance, each new bus cost about $250 more than a comparable diesel bus. District officials say that the higher initial cost can be quickly recouped in fuel savings.

In fact, by adding propane buses to its fleet, Grain Valley School District has noted savings on both fuel and maintenance. On average, propane autogas costs up to 50 percent less than diesel. As part of its Grain Valley Schools propane bus and fueling setupnegotiated contract, Grain Valley paid a locked-in rate of $1.20 per gallon of propane in 2018-1019. For the 2019-2020 school year, the district pays $1.15 per gallon. For comparison, the district pays $2.31 per gallon on average for diesel.

Each bus in the district runs about 9,000 miles per year. For the 2018-2019 school year, fuel savings amounted to about $14,500. “The district’s increased savings year after year will allow the transportation department to serve as a better steward of taxpayer money,” said Brady.

Additional savings come from the reduced maintenance. With propane autogas, no exhaust after-treatment or diesel emissions fluids are required like with diesel to meet today’s strict emissions regulations. Propane vehicles don’t need particulate trap systems, turbochargers and intercoolers. Plus, propane uses less engine oil. All these factors contribute to the overall savings of time and money. The district’s technicians like the propane buses, Brady reports. “There are fewer parts and systems to have to maintain.”

However, Brady explained that “warranty work is challenging with no established shop in Kansas City.” He noted that IC does provide a traveling technician who assists his staff when they encounter maintenance issues. Kansas City Regional Clean Cities recommends fleet managers ensure that there is a local service shop to do warranty and continuing work on buses before purchasing.

Even more saving shows up for the district in the winter. Due to the chemical properties of propane autogas, the propane buses warm up faster and have no cold start issues. Unlike diesel vehicles, these buses can start up in temperatures as low as -40 degrees Fahrenheit. School districts report lower electric costs because the propane buses don’t rely on block heaters. “Our propane buses warmed up faster this past winter than the diesel buses,” Brady said.

Beyond the Bottom Line 

Grain Valley’s propane buses are helping the community’s air quality. Unlike diesel buses, propane vehicles emit virtually no particulate matter and, with substantially less nitrogen oxides (NOx). Buses fueled by propane also emit fewer greenhouse gases and total hydrocarbon emissions when compared to diesel buses. Propane’s quiet operation makes riding the bus more pleasant for passengers and safer for drivers, who are less distracted by engine noise. “We’ve benefitted from much cleaner air and much quieter buses running through neighborhoods,” said Brady.

Drivers also report that the propane dispenser pumps are just as fast or faster than the diesel fuel pump when it’s time to fill the tank. The district notes that it will be sure to order buses with 100-gallon fuel tanks going forward. “These were not available from IC when we placed our first order,” Brady said.

The district’s leadership in adopting an alternative fuel earned it a 2018 Agent of Change Award from the Metropolitan Energy Center, a Kansas City nonprofit catalyst for energy efficiency, economic development and environmental vitality.

The district’s plan to purchase seven more propane buses this year, and eventually move to an all-propane fleet, speaks to the administration’s belief in the benefits of this alternative fuel for their students, drivers and overall community.

“Our district made the decision on propane buses to save money. The environmental impact is an added benefit. There’s no reason to not make the move into propane now,” Brady said.

 

About MOPERC: The Missouri Propane Education & Research Council is a not-for-profit organization authorized by the Missouri Legislature. Dedicated to propane education and public awareness, MOPERC provides industry training, consumer safety, appliance rebates and market development programs. The council is composed of 15 volunteer directors and adm inistered by an executive staff. Visit PropaneMissouri.com.

For fiscal year 2019 (July 2018 through June 2019), the Missouri Department of Natural Resources will fund $2.75 million in government truck repower and replacement projects.

Implementation Guidelines

Deadline:  Monday Dec. 31, 2018 at 5 p.m. CST.

Eligibility:  Qualifying applicants include government agencies that own eligible trucks:  “Government” shall mean a State or local government agency.  This category includes a school district, municipality, city, county, special district, transit district, joint powers authority, or port authority, owning fleets purchased with government funds.  It also includes a tribal government or native village. The term “State” means the several States, the District of Columbia, and the Commonwealth of Puerto Rico.

Key Program Requirements:

  • Eligible engine model years 1992-2009.
  • Eligible vehicles are Class 4-8 with GVWR greater than 14,000 pounds.
  • Older engine or vehicle must be permanently disabled.
  • New diesel, biodiesel, CNG, propane and all-electric engines are all eligible for funding.
  • The program provides up to 75% of the cost of an engine repower.
  • The program provides up to 50% of the cost of a new vehicle.
  • For this round, maximum request from a single applicant is $1 million.
  • Applications submitted through modnr.force.com.

Events

Nothing Found

Sorry, no posts matched your criteria